import streamlit as st import pandas as pd import sklearn import pickle loaded_model = pickle.load(open("finalized_model.sav", 'rb')) def main(): st.image('img.jpg') st.title("⚙️🔩 Engine prediction ⚙️🔩") st.warning("Our Machine Learning algorithm predicts whether the elements of a machine work consistently\n\n") with st.form(key='columns_in_form'): c1, c2, c3 = st.columns(3) with c1: airTemperature = st.slider("Air temperature [K]", 0, 1500, 750) with c2: processTemperatire = st.slider( "Process temperature [K]", 0, 1500, 750) with c3: rotationSpeed = st.slider( "Rotational speed [rpm]", 0, 1500, 750) submitButton1 = st.form_submit_button(label='Save') with st.form(key='columns_in_form2'): c1, c2, c3, c4 = st.columns(4) with c1: toolWear = st.slider("Tool wear [min]", 0, 1500, 750) with c2: typeL = st.select_slider('Type_L', options=[0, 1]) with c3: typeM = st.select_slider('Type_M', options=[0, 1]) with c4: torqueNm = st.slider('Torque [Nm]', 0,300,150) submitButton2 = st.form_submit_button(label='Calculate') if (submitButton2): d = {'Air temperature [K]': airTemperature, 'Process temperature [K]': processTemperatire, 'Rotational speed [rpm]': rotationSpeed, "Torque [Nm]": torqueNm, "Tool wear [min]": toolWear, "Type_L": typeL, "Type_M": typeM} ser = pd.Series(data=d, index=['Air temperature [K]', 'Process temperature [K]', 'Rotational speed [rpm]', 'Torque [Nm]', 'Tool wear [min]', 'Type_L', 'Type_M']) res = loaded_model.predict([ser]) if (res[0] == 0): st.success("The machine is in good condition") else: st.error("The machine seems to have problems") if __name__ == '__main__': main()