from transformers import ViTFeatureExtractor, ViTForImageClassification from PIL import Image import requests # url = 'http://images.cocodataset.org/val2017/000000039769.jpg' url = 'https://cdn-s-www.leprogres.fr/images/E86C9616-1371-4B3A-9CF8-05A2D891D0A3/NW_detail_M/comme-on-peut-le-voir-le-multipla-de-premiere-generation-est-la-copie-conforme-du-multipla-concept-deux-phares-sont-loges-dans-le-bandeau-sous-le-parebrise-photo-fiat-1664781478.jpg' image = Image.open(requests.get(url, stream=True).raw) # from IPython.display import Image image.show() feature_extractor = ViTFeatureExtractor.from_pretrained( 'google/vit-base-patch16-224') model = ViTForImageClassification.from_pretrained( 'google/vit-base-patch16-224') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx])