Kolpitor commited on
Commit
d28a08e
·
1 Parent(s): c09079a

Delete streamlit_app.py

Browse files
Files changed (1) hide show
  1. streamlit_app.py +0 -105
streamlit_app.py DELETED
@@ -1,105 +0,0 @@
1
- import os
2
- os.system('pip install pdpbox==0.2.1')
3
-
4
- from pdpbox.pdp import pdp_isolate, pdp_plot
5
- from sklearn.model_selection import train_test_split
6
- from sklearn.metrics import mean_absolute_error
7
- from sklearn.linear_model import LinearRegression
8
- from sklearn.pipeline import make_pipeline
9
- from sklearn.preprocessing import StandardScaler
10
- from sklearn.feature_selection import SelectKBest
11
- from sklearn.ensemble import RandomForestRegressor
12
- import pandas as pd
13
- from numpy import mean
14
- import streamlit as st
15
-
16
- """
17
- # IOT
18
- """
19
-
20
-
21
- max_depth_input = st.slider("Max depth", 1, 100, 5)
22
- colsample_bytree_input = st.slider("Colsample bytree", 0.0, 1.0, 0.5)
23
- learning_rate_input = st.slider("Learning rate", 0.0, 1.0, 0.2)
24
- alpha_input = st.slider("Alpha", 1, 100, 10)
25
- n_estimators_input = st.slider("n estimators", 1, 100, 20)
26
- city_input = st.selectbox(
27
- 'Which city do you want to predict rain ?',
28
- ("Canberra",
29
- "Albury",
30
- "Penrith",
31
- "Sydney",
32
- "MountGinini",
33
- "Bendigo",
34
- "Brisbane",
35
- "Portland"), index=0)
36
-
37
-
38
- df = pd.read_csv("city_temperature.csv")
39
-
40
- def mergeStateToCountry():
41
- df.loc[df['State'].notna(), 'Country'] = df['State']
42
- df = df.loc[:, ~df.columns.str.contains('State')]
43
-
44
- i = 0
45
-
46
- for region in df["Region"].unique():
47
- df["Region"] = df["Region"].replace(region, str(i))
48
- i += 1
49
-
50
- i = 0
51
-
52
- for country in df["Country"].unique():
53
- df["Country"] = df["Country"].replace(country, str(i))
54
- i += 1
55
-
56
- i = 0
57
-
58
- for state in df["State"].unique():
59
- df["State"] = df["State"].replace(state, str(i))
60
- i += 1
61
-
62
- i = 0
63
-
64
- for city in df["City"].unique():
65
- df["City"] = df["City"].replace(city, str(i))
66
- i += 1
67
-
68
- df = df.astype({"Region": "int"})
69
- df = df.astype({"Country": "int"})
70
- df = df.astype({"State": "int"})
71
- df = df.astype({"City": "int"})
72
-
73
- target = 'AvgTemperature'
74
- # Here Y would be our target
75
- Y = df[target]
76
- # Here X would contain the other column
77
- #X = df.loc[:, df.columns != target]
78
- X = df[['Month', 'Day', 'Year']]
79
-
80
- X_train, X_val, Y_train, Y_val = train_test_split(X, Y, test_size=0.25, random_state=42)
81
-
82
- y_pred = [Y_train.mean()] * len(Y_train)
83
-
84
- st.write('Baseline MAE: %f' % (round(mean_absolute_error(Y_train, y_pred), 5)))
85
-
86
- lm = make_pipeline(StandardScaler(), LinearRegression(),)
87
-
88
- lm.fit(X_train, Y_train)
89
-
90
- st.write('Linear Regression Training MAE: %f' % (round(mean_absolute_error(Y_train, lm.predict(X_train)), 5)))
91
- st.write('Linear Regression Test MAE: %f' % (round(mean_absolute_error(Y_val, lm.predict(X_val)), 5)))
92
-
93
- forestModel = make_pipeline(
94
- SelectKBest(k="all"),
95
- StandardScaler(),
96
- RandomForestRegressor(
97
- n_estimators=100,
98
- max_depth=50,
99
- random_state=77,
100
- n_jobs=-1))
101
-
102
- forestModel.fit (X_train, Y_train)
103
-
104
- st.write('Random Forest Regressor Model Training MAE: %f' % (mean_absolute_error(Y_train, forestModel.predict(X_train))))
105
- st.write('Random Forest Regressor Model Test MAE: %f' % (mean_absolute_error(Y_val, forestModel.predict(X_val))))