jclge commited on
Commit
0283499
·
1 Parent(s): 2e9451b

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -7
app.py CHANGED
@@ -1,8 +1,21 @@
1
  import pandas as pd
2
  import pickle as pkl
 
 
 
 
 
3
  from numpy import reshape
4
  import numpy as np
5
- import sklearn
 
 
 
 
 
 
 
 
6
  import gradio as gr
7
 
8
  class NLP:
@@ -71,11 +84,11 @@ class NLP:
71
  return(tmp, str(self.__perceptron_rat_score))
72
 
73
  def kneighbors_pol_eval(self, evalu):
74
- return ([0, 0], "0.45")
75
  #return(self.__k_neighbors_pol.predict_proba(evalu).tolist(), str(self.__k_neighbors_rat_score))
76
 
77
  def kneighbors_rat_eval(self, evalu):
78
- return ([0, 0], "0.27")
79
  #return(self.__k_neighbors_rat.predict_proba(evalu).tolist(), str(self.__k_neighbors_rat_score))
80
 
81
  def NB_pol_eval(self, evalu):
@@ -85,11 +98,11 @@ class NLP:
85
  return(self.__nb_rat.predict_proba(evalu).tolist(), str(self.__nb_rat_score))
86
 
87
  def SVM_pol_eval(self, evalu):
88
- return ([0, 0], "0.57")
89
  #return(self.__svm_pol.predict_proba(evalu).tolist(), str(self.__svm_pol_score))
90
 
91
  def SVM_rat_eval(self, evalu):
92
- return ([0, 0], "0.22")
93
  #return(self.__svm_rat.predict_proba(evalu).tolist(), str(self.__svm_rat_score))
94
 
95
  def RF_pol_eval(self, evalu):
@@ -130,8 +143,10 @@ class NLP:
130
  percent, score = self.__exec[model][1](review)
131
  res = pd.DataFrame({'Rated 1/5': percent[0][0], 'Rated 2/5': percent[0][1], 'Rated 4/5': percent[0][2], 'Rated 5/5': percent[0][3]}, index=["Prediction"])
132
 
133
- return (res, f"Model: {model}\nDataset: {Dataset}\nAccuracy: {str(float(score)*100)}")
134
-
 
 
135
 
136
  if __name__ == "__main__":
137
  class Execution:
 
1
  import pandas as pd
2
  import pickle as pkl
3
+ from sklearn.preprocessing import StandardScaler
4
+ from sklearn.model_selection import train_test_split
5
+ from sklearn.dummy import DummyClassifier
6
+ from sklearn.feature_extraction.text import CountVectorizer
7
+ from sklearn.linear_model import Perceptron
8
  from numpy import reshape
9
  import numpy as np
10
+ from sklearn.metrics import accuracy_score
11
+ from sklearn.metrics import classification_report
12
+ from sklearn.naive_bayes import GaussianNB
13
+ from sklearn.neighbors import KNeighborsClassifier
14
+ from sklearn.linear_model import Perceptron
15
+ from sklearn.dummy import DummyClassifier
16
+ from sklearn.ensemble import RandomForestClassifier
17
+ from sklearn.neural_network import MLPClassifier
18
+ from sklearn import svm
19
  import gradio as gr
20
 
21
  class NLP:
 
84
  return(tmp, str(self.__perceptron_rat_score))
85
 
86
  def kneighbors_pol_eval(self, evalu):
87
+ return ([[0, 0]], "0.45")
88
  #return(self.__k_neighbors_pol.predict_proba(evalu).tolist(), str(self.__k_neighbors_rat_score))
89
 
90
  def kneighbors_rat_eval(self, evalu):
91
+ return ([[0, 0]], "0.27")
92
  #return(self.__k_neighbors_rat.predict_proba(evalu).tolist(), str(self.__k_neighbors_rat_score))
93
 
94
  def NB_pol_eval(self, evalu):
 
98
  return(self.__nb_rat.predict_proba(evalu).tolist(), str(self.__nb_rat_score))
99
 
100
  def SVM_pol_eval(self, evalu):
101
+ return ([[0, 0]], "0.57")
102
  #return(self.__svm_pol.predict_proba(evalu).tolist(), str(self.__svm_pol_score))
103
 
104
  def SVM_rat_eval(self, evalu):
105
+ return ([[0, 0]], "0.22")
106
  #return(self.__svm_rat.predict_proba(evalu).tolist(), str(self.__svm_rat_score))
107
 
108
  def RF_pol_eval(self, evalu):
 
143
  percent, score = self.__exec[model][1](review)
144
  res = pd.DataFrame({'Rated 1/5': percent[0][0], 'Rated 2/5': percent[0][1], 'Rated 4/5': percent[0][2], 'Rated 5/5': percent[0][3]}, index=["Prediction"])
145
 
146
+ if (percent[0][0] == 0 and percent[1][0] == 0):
147
+ return (res, f"Model: {model}\nDataset: {Dataset}\nAccuracy: {str(float(score)*100)}\nDue to the size of the model, it has not been implemented on huggingface.")
148
+ else:
149
+ return (res, f"Model: {model}\nDataset: {Dataset}\nAccuracy: {str(float(score)*100)}")
150
 
151
  if __name__ == "__main__":
152
  class Execution: