Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,21 @@
|
|
1 |
import pandas as pd
|
2 |
import pickle as pkl
|
|
|
|
|
|
|
|
|
|
|
3 |
from numpy import reshape
|
4 |
import numpy as np
|
5 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import gradio as gr
|
7 |
|
8 |
class NLP:
|
@@ -71,11 +84,11 @@ class NLP:
|
|
71 |
return(tmp, str(self.__perceptron_rat_score))
|
72 |
|
73 |
def kneighbors_pol_eval(self, evalu):
|
74 |
-
return ([0, 0], "0.45")
|
75 |
#return(self.__k_neighbors_pol.predict_proba(evalu).tolist(), str(self.__k_neighbors_rat_score))
|
76 |
|
77 |
def kneighbors_rat_eval(self, evalu):
|
78 |
-
return ([0, 0], "0.27")
|
79 |
#return(self.__k_neighbors_rat.predict_proba(evalu).tolist(), str(self.__k_neighbors_rat_score))
|
80 |
|
81 |
def NB_pol_eval(self, evalu):
|
@@ -85,11 +98,11 @@ class NLP:
|
|
85 |
return(self.__nb_rat.predict_proba(evalu).tolist(), str(self.__nb_rat_score))
|
86 |
|
87 |
def SVM_pol_eval(self, evalu):
|
88 |
-
return ([0, 0], "0.57")
|
89 |
#return(self.__svm_pol.predict_proba(evalu).tolist(), str(self.__svm_pol_score))
|
90 |
|
91 |
def SVM_rat_eval(self, evalu):
|
92 |
-
return ([0, 0], "0.22")
|
93 |
#return(self.__svm_rat.predict_proba(evalu).tolist(), str(self.__svm_rat_score))
|
94 |
|
95 |
def RF_pol_eval(self, evalu):
|
@@ -130,8 +143,10 @@ class NLP:
|
|
130 |
percent, score = self.__exec[model][1](review)
|
131 |
res = pd.DataFrame({'Rated 1/5': percent[0][0], 'Rated 2/5': percent[0][1], 'Rated 4/5': percent[0][2], 'Rated 5/5': percent[0][3]}, index=["Prediction"])
|
132 |
|
133 |
-
|
134 |
-
|
|
|
|
|
135 |
|
136 |
if __name__ == "__main__":
|
137 |
class Execution:
|
|
|
1 |
import pandas as pd
|
2 |
import pickle as pkl
|
3 |
+
from sklearn.preprocessing import StandardScaler
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
from sklearn.dummy import DummyClassifier
|
6 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
7 |
+
from sklearn.linear_model import Perceptron
|
8 |
from numpy import reshape
|
9 |
import numpy as np
|
10 |
+
from sklearn.metrics import accuracy_score
|
11 |
+
from sklearn.metrics import classification_report
|
12 |
+
from sklearn.naive_bayes import GaussianNB
|
13 |
+
from sklearn.neighbors import KNeighborsClassifier
|
14 |
+
from sklearn.linear_model import Perceptron
|
15 |
+
from sklearn.dummy import DummyClassifier
|
16 |
+
from sklearn.ensemble import RandomForestClassifier
|
17 |
+
from sklearn.neural_network import MLPClassifier
|
18 |
+
from sklearn import svm
|
19 |
import gradio as gr
|
20 |
|
21 |
class NLP:
|
|
|
84 |
return(tmp, str(self.__perceptron_rat_score))
|
85 |
|
86 |
def kneighbors_pol_eval(self, evalu):
|
87 |
+
return ([[0, 0]], "0.45")
|
88 |
#return(self.__k_neighbors_pol.predict_proba(evalu).tolist(), str(self.__k_neighbors_rat_score))
|
89 |
|
90 |
def kneighbors_rat_eval(self, evalu):
|
91 |
+
return ([[0, 0]], "0.27")
|
92 |
#return(self.__k_neighbors_rat.predict_proba(evalu).tolist(), str(self.__k_neighbors_rat_score))
|
93 |
|
94 |
def NB_pol_eval(self, evalu):
|
|
|
98 |
return(self.__nb_rat.predict_proba(evalu).tolist(), str(self.__nb_rat_score))
|
99 |
|
100 |
def SVM_pol_eval(self, evalu):
|
101 |
+
return ([[0, 0]], "0.57")
|
102 |
#return(self.__svm_pol.predict_proba(evalu).tolist(), str(self.__svm_pol_score))
|
103 |
|
104 |
def SVM_rat_eval(self, evalu):
|
105 |
+
return ([[0, 0]], "0.22")
|
106 |
#return(self.__svm_rat.predict_proba(evalu).tolist(), str(self.__svm_rat_score))
|
107 |
|
108 |
def RF_pol_eval(self, evalu):
|
|
|
143 |
percent, score = self.__exec[model][1](review)
|
144 |
res = pd.DataFrame({'Rated 1/5': percent[0][0], 'Rated 2/5': percent[0][1], 'Rated 4/5': percent[0][2], 'Rated 5/5': percent[0][3]}, index=["Prediction"])
|
145 |
|
146 |
+
if (percent[0][0] == 0 and percent[1][0] == 0):
|
147 |
+
return (res, f"Model: {model}\nDataset: {Dataset}\nAccuracy: {str(float(score)*100)}\nDue to the size of the model, it has not been implemented on huggingface.")
|
148 |
+
else:
|
149 |
+
return (res, f"Model: {model}\nDataset: {Dataset}\nAccuracy: {str(float(score)*100)}")
|
150 |
|
151 |
if __name__ == "__main__":
|
152 |
class Execution:
|