Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import pickle as pkl
|
3 |
+
from sklearn.preprocessing import StandardScaler
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
from sklearn.dummy import DummyClassifier
|
6 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
7 |
+
from sklearn.linear_model import Perceptron
|
8 |
+
from numpy import reshape
|
9 |
+
import numpy as np
|
10 |
+
from sklearn.metrics import accuracy_score
|
11 |
+
from sklearn.metrics import classification_report
|
12 |
+
from sklearn.naive_bayes import GaussianNB
|
13 |
+
from sklearn.neighbors import KNeighborsClassifier
|
14 |
+
from sklearn.linear_model import Perceptron
|
15 |
+
from sklearn.dummy import DummyClassifier
|
16 |
+
from sklearn.ensemble import RandomForestClassifier
|
17 |
+
from sklearn.neural_network import MLPClassifier
|
18 |
+
from sklearn import svm
|
19 |
+
import gradio as gr
|
20 |
+
|
21 |
+
class NLP:
|
22 |
+
def __init__(self) -> None:
|
23 |
+
self.__path = "models/"
|
24 |
+
self.__exec = {"Perceptron": [self.perceptron_pol_eval, self.perceptron_rat_eval], "K-Neighbors": [self.kneighbors_pol_eval, self.kneighbors_rat_eval], "Naive Bayes": [self.NB_pol_eval, self.NB_rat_eval], "SVM": [self.SVM_pol_eval, self.SVM_rat_eval], "Random Forest": [self.RF_pol_eval, self.RF_rat_eval], "NN (MLP)": [self.MLP_pol_eval, self.MLP_rat_eval], "Dummy (Baseline)": [self.Dummy_pol_eval, self.Dummy_rat_eval]}
|
25 |
+
self.__get_vocabulary()
|
26 |
+
self.__vectorizer_pol = pkl.load(open(self.__path + "vectorizer_pol.pkl", 'rb'))
|
27 |
+
self.__vectorizer_rat = pkl.load(open(self.__path + "vectorizer_rat.pkl", 'rb'))
|
28 |
+
self.__X_pol_test = pkl.load(open(self.__path + "X_pol_test.pkl", 'rb'))
|
29 |
+
self.__y_pol_test = pkl.load(open(self.__path + "y_pol_test.pkl", 'rb'))
|
30 |
+
self.__X_rat_test = pkl.load(open(self.__path + "X_rat_test.pkl", 'rb'))
|
31 |
+
self.__y_rat_test = pkl.load(open(self.__path + "y_rat_test.pkl", 'rb'))
|
32 |
+
self.__get_models()
|
33 |
+
|
34 |
+
def __get_models(self):
|
35 |
+
self.__perceptron_pol = pkl.load(open(self.__path + "perceptron_pol.pkl", 'rb'))
|
36 |
+
self.__perceptron_pol_score = self.__perceptron_pol.score(self.__X_pol_test, self.__y_pol_test)
|
37 |
+
self.__perceptron_rat = pkl.load(open(self.__path + "perceptron_rat.pkl", 'rb'))
|
38 |
+
self.__perceptron_rat_score = self.__perceptron_rat.score(self.__X_rat_test, self.__y_rat_test)
|
39 |
+
|
40 |
+
self.__rf_pol = pkl.load(open(self.__path + "rf_pol.pkl", 'rb'))
|
41 |
+
self.__rf_pol_score = self.__rf_pol.score(self.__X_pol_test, self.__y_pol_test)
|
42 |
+
self.__rf_rat = pkl.load(open(self.__path + "rf_rat.pkl", 'rb'))
|
43 |
+
self.__rf_rat_score = self.__rf_rat.score(self.__X_rat_test, self.__y_rat_test)
|
44 |
+
|
45 |
+
self.__nb_pol = pkl.load(open(self.__path + "nb_pol.pkl", 'rb'))
|
46 |
+
self.__nb_pol_score = self.__nb_pol.score(self.__X_pol_test, self.__y_pol_test)
|
47 |
+
self.__nb_rat = pkl.load(open(self.__path + "nb_rat.pkl", 'rb'))
|
48 |
+
self.__nb_rat_score = self.__nb_rat.score(self.__X_rat_test, self.__y_rat_test)
|
49 |
+
|
50 |
+
# self.__svm_pol = pkl.load(open(self.__path + "svm_pol.pkl", 'rb'))
|
51 |
+
# self.__svm_pol_score = self.__svm_pol.score(self.__X_pol_test, self.__y_pol_test)
|
52 |
+
# self.__svm_rat = pkl.load(open(self.__path + "svm_rat.pkl", 'rb'))
|
53 |
+
# self.__svm_rat_score = self.__svm_rat.score(self.__X_rat_test, self.__y_rat_test)
|
54 |
+
|
55 |
+
self.__k_neighbors_pol = pkl.load(open(self.__path + "kneighbors_pol.pkl", 'rb'))
|
56 |
+
self.__k_neighbors_pol_score = self.__k_neighbors_pol.score(self.__X_pol_test, self.__y_pol_test)
|
57 |
+
self.__k_neighbors_rat = pkl.load(open(self.__path + "kneighbors_rat.pkl", 'rb'))
|
58 |
+
self.__k_neighbors_rat_score = self.__k_neighbors_rat.score(self.__X_rat_test, self.__y_rat_test)
|
59 |
+
|
60 |
+
self.__dummy_pol = pkl.load(open(self.__path + "dummy_pol.pkl", 'rb'))
|
61 |
+
self.__dummy_pol_score = self.__dummy_pol.score(self.__X_pol_test, self.__y_pol_test)
|
62 |
+
self.__dummy_rat = pkl.load(open(self.__path + "dummy_rat.pkl", 'rb'))
|
63 |
+
self.__dummy_rat_score = self.__dummy_rat.score(self.__X_rat_test, self.__y_rat_test))
|
64 |
+
|
65 |
+
self.__clf_pol = pkl.load(open(self.__path + "clf_pol.pkl", 'rb'))
|
66 |
+
self.__clf_pol_score = self.__clf_pol.score(self.__X_pol_test, self.__y_pol_test)
|
67 |
+
self.__clf_rat = pkl.load(open(self.__path + "clf_rat.pkl", 'rb'))
|
68 |
+
self.__clf_rat_score = self.__clf_rat.score(self.__X_rat_test, self.__y_rat_test)
|
69 |
+
|
70 |
+
def perceptron_pol_eval(self, evalu):
|
71 |
+
tmp = self.__perceptron_pol.predict(evalu)
|
72 |
+
return([[tmp, 1-tmp]], str(self.__perceptron_pol_score))
|
73 |
+
|
74 |
+
def perceptron_rat_eval(self, evalu):
|
75 |
+
tmp = self.__perceptron_rat.predict(evalu)
|
76 |
+
if (tmp == 5):
|
77 |
+
tmp = [[0, 0, 0, 1]]
|
78 |
+
elif (tmp == 4):
|
79 |
+
tmp = [[0, 0, 1, 0]]
|
80 |
+
elif (tmp == 2):
|
81 |
+
tmp = [[0, 1, 0, 0]]
|
82 |
+
else:
|
83 |
+
tmp = [[1, 0, 0, 0]]
|
84 |
+
return(tmp, str(self.__perceptron_rat_score))
|
85 |
+
|
86 |
+
def kneighbors_pol_eval(self, evalu):
|
87 |
+
return(self.__k_neighbors_pol.predict_proba(evalu).tolist(), str(self.__k_neighbors_rat_score))
|
88 |
+
|
89 |
+
def kneighbors_rat_eval(self, evalu):
|
90 |
+
return(self.__k_neighbors_rat.predict_proba(evalu).tolist(), str(self.__k_neighbors_rat_score))
|
91 |
+
|
92 |
+
def NB_pol_eval(self, evalu):
|
93 |
+
return(self.__nb_pol.predict_proba(evalu).tolist(), str(self.__nb_pol_score))
|
94 |
+
|
95 |
+
def NB_rat_eval(self, evalu):
|
96 |
+
return(self.__nb_rat.predict_proba(evalu).tolist(), str(self.__nb_rat_score))
|
97 |
+
|
98 |
+
def SVM_pol_eval(self, evalu):
|
99 |
+
return(self.__svm_pol.predict_proba(evalu).tolist(), str(self.__svm_pol_score))
|
100 |
+
|
101 |
+
def SVM_rat_eval(self, evalu):
|
102 |
+
return(self.__svm_rat.predict_proba(evalu).tolist(), str(self.__svm_rat_score))
|
103 |
+
|
104 |
+
def RF_pol_eval(self, evalu):
|
105 |
+
return(self.__rf_pol.predict_proba(evalu).tolist(), str(self.__rf_pol_score))
|
106 |
+
|
107 |
+
def RF_rat_eval(self, evalu):
|
108 |
+
return(self.__rf_rat.predict_proba(evalu).tolist(), str(self.__rf_rat_score))
|
109 |
+
|
110 |
+
def MLP_pol_eval(self, evalu):
|
111 |
+
return(self.__clf_pol.predict_proba(evalu).tolist(), str(self.__clf_pol_score))
|
112 |
+
|
113 |
+
def MLP_rat_eval(self, evalu):
|
114 |
+
return(self.__clf_rat.predict_proba(evalu).tolist(), str(self.__clf_rat_score))
|
115 |
+
|
116 |
+
def Dummy_pol_eval(self, evalu):
|
117 |
+
return(self.__dummy_pol.predict_proba(evalu).tolist(), self.__dummy_pol_score)
|
118 |
+
|
119 |
+
def Dummy_rat_eval(self, evalu):
|
120 |
+
tmp = self.__dummy_rat.predict_proba(evalu).tolist()
|
121 |
+
return(tmp, self.__dummy_rat.score)
|
122 |
+
|
123 |
+
def __get_vocabulary(self):
|
124 |
+
with open("dataset/vocabulary_polarity.txt", "r") as o:
|
125 |
+
res = o.read()
|
126 |
+
self.__vocabulary = res.split("\n")
|
127 |
+
self.__vocabulary = list(set(self.__vocabulary))
|
128 |
+
|
129 |
+
def Tokenizer(self, text):
|
130 |
+
tmp = self.__vectorizer_pol.transform([text])
|
131 |
+
tmp = tmp.toarray()
|
132 |
+
return (tmp)
|
133 |
+
|
134 |
+
def Manage(self, model, Dataset, review):
|
135 |
+
if (Dataset == "Binary"):
|
136 |
+
percent, score = self.__exec[model][0](review)
|
137 |
+
res = pd.DataFrame({'Positive': percent[0][0], 'Negative': percent[0][1]}, index=["Prediction"])
|
138 |
+
else:
|
139 |
+
percent, score = self.__exec[model][1](review)
|
140 |
+
res = pd.DataFrame({'Rated 1/5': percent[0][0], 'Rated 2/5': percent[0][1], 'Rated 4/5': percent[0][2], 'Rated 5/5': percent[0][3]}, index=["Prediction"])
|
141 |
+
|
142 |
+
return (res, f"Model: {model}\nDataset: {Dataset}\nAccuracy: {str(float(score)*100)}")
|
143 |
+
|
144 |
+
|
145 |
+
if __name__ == "__main__":
|
146 |
+
class Execution:
|
147 |
+
def __init__(self):
|
148 |
+
self.__n = NLP()
|
149 |
+
|
150 |
+
def greet(self, Model, Dataset, Review):
|
151 |
+
return(self.__n.Manage(Model, Dataset, self.__n.Tokenizer(Review)))
|
152 |
+
|
153 |
+
e = Execution()
|
154 |
+
gr.Interface(e.greet, [gr.inputs.Dropdown(["Perceptron", "K-Neighbors", "Naive Bayes", "SVM", "Random Forest", "NN (MLP)", "Dummy (Baseline)"]), gr.inputs.Dropdown(["Binary", "Rating"]), "text"], [gr.outputs.Dataframe(), "text"]).launch()
|