Naxos's picture
Upload app.py
dc3f74b
raw
history blame
3.9 kB
import os
import cv2
import numpy as np
from collections import Counter
from time import time
import tkinter.filedialog
from tkinter import *
import sys
import gradio as gr
def k_nearest_neighbors(predict, k):
distances = []
for image in training_data:
distances.append([np.linalg.norm(image[0] - predict), image[1]]) # calcul de distance euclidienne
distances.sort()
votes = [i[1] for i in distances[:k]]
votes = ''.join(str(e) for e in votes)
votes = votes.replace(',', '')
votes = votes.replace(' ', '')
result = Counter(votes).most_common(1)[0][0]
return result
def test():
start = time()
correct = 0
total = 0
skipped = 0
for i in range(len(x_test)+1):
try:
prediction = k_nearest_neighbors(x_test[i], 5)
if int(prediction) == y_test[i]:
correct += 1
total += 1
except Exception as e:
print('An exception occured')
skipped += 1
accuracy = correct/total
end = time()
print(end-start)
print(accuracy)
def ia_handler(image):
pred = k_nearest_neighbors(img, 10)
if pred == 0:
return 'It\'s a coin'
return 'It\'s a banknote'
def main():
if len(sys.argv) > 1 and sys.argv[1] == '--cli':
root = Tk()
root.withdraw()
root.update()
filename = tkinter.filedialog.askopenfilename(title="Ouvrir fichier", filetypes=[('all files', '.*')]) # sélectionner la photo
src = cv2.imread(cv2.samples.findFile(filename), cv2.IMREAD_COLOR) # charger la photo
root.destroy()
img = resize_img(src)
pred = k_nearest_neighbors(img, 10)
if pred == '0':
print('Coin')
else:
print('Banknote')
else:
iface = gr.Interface(fn=ia_handler, inputs="image", outputs="text")
iface.launch()
def resize_img(img):
dim = (150, 150)
new_img = cv2.resize(img, dim)
return new_img
if __name__=="__main__":
coin_datadir_train = '../coins-dataset/classified/train'
coin_datadir_test = '../coins-dataset/classified/test'
note_datadir_train = '../banknote-dataset/classified/train'
note_datadir_test = '../banknote-dataset/classified/test'
categories = ['1c', '2c', '5c', '10c', '20c', '50c', '1e', '2e', '5e', '10e', '20e', '50e']
coin_index = 8
training_data = []
for category in categories[:coin_index]:
path = os.path.join(coin_datadir_train, category)
label = 0
for img in os.listdir(path):
img_array = cv2.imread(os.path.join(path, img))
training_data.append([img_array, label])
for category in categories[coin_index:]:
path = os.path.join(note_datadir_train, category)
label = 1
for img in os.listdir(path):
img_array = resize_img(cv2.imread(os.path.join(path, img)))
training_data.append([img_array, label])
testing_data = []
for category in categories[:coin_index]:
path = os.path.join(coin_datadir_test, category)
label = 0
for img in os.listdir(path):
img_array = cv2.imread(os.path.join(path, img))
testing_data.append([img_array, label])
for category in categories[coin_index:]:
path = os.path.join(note_datadir_test, category)
label = 1
for img in os.listdir(path):
img_array = resize_img(cv2.imread(os.path.join(path, img)))
testing_data.append([img_array, label])
x_train = []
y_train = []
for features, label in training_data:
x_train.append(features)
y_train.append(label)
x_train = np.array(x_train)
x_test = []
y_test = []
for features, label in testing_data:
x_test.append(features)
y_test.append(label)
x_test = np.array(x_test)
main()