File size: 5,785 Bytes
7e9eac8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d853661
b6e1649
7e9eac8
 
 
b6e1649
7e9eac8
b6e1649
7e9eac8
8b829a1
7e9eac8
 
7fd316f
7e9eac8
7fd316f
7e9eac8
7fd316f
7e9eac8
 
 
7fd316f
5ac7b22
 
c7604ad
7e9eac8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2401daa
 
 
 
 
7e9eac8
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb01fc
 
7e9eac8
ebb01fc
7e9eac8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb01fc
7e9eac8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59e5d74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf3e7ae
7e9eac8
7fd316f
7e9eac8
7fd316f
 
7e9eac8
7fd316f
25441a4
 
94f81c0
2afe5f3
 
 
 
 
 
94f81c0
 
ebb01fc
 
 
 
 
7fd316f
ebb01fc
 
7fd316f
7e9eac8
7fd316f
7e9eac8
 
 
 
 
 
5ac7b22
 
7e9eac8
5ac7b22
ebb01fc
7e9eac8
 
 
 
 
 
 
 
 
dd6a80b
 
6a19fc4
dd6a80b
 
50e49e1
dd6a80b
 
 
 
 
7e9eac8
dd6a80b
7e9eac8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#!/usr/bin/env python3
#
# Copyright      2022-2023  Xiaomi Corp.        (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# References:
# https://gradio.app/docs/#dropdown

import logging
import os
import time
import uuid

import gradio as gr
import soundfile as sf

from model import get_pretrained_model, language_to_models

title = "# Equipo 3 - Texto a Voz"

description = """
Este espacio muestra el comó convertir texto a voz con tecnologías como Piper, Kaldi, y Next-gen.

El proceso de convertir sucede en un CPU con un contenedor docker dado por la plataforma Hugging Face.

Si quiere obtener mas información visite los sigientes links:

- <https://github.com/k2-fsa/sherpa-onnx>

Tambien existen aplicaciones android con esta tecnología en el siguiente enlace:

- <https://huggingface.co/csukuangfj/sherpa-onnx-apk/tree/main/tts>

"""

# css style is copied from
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113
css = """
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
"""


def update_model_dropdown(language: str):
    if language in language_to_models:
        choices = language_to_models[language]
        return gr.Dropdown(
            choices=choices,
            value=choices[0],
            interactive=True,
        )

    raise ValueError(f"Unsupported language: {language}")


def build_html_output(s: str, style: str = "result_item_success"):
    return f"""
    <div class='result'>
        <div class='result_item {style}'>
          {s}
        </div>
    </div>
    """


def process(language: str, repo_id: str, text: str, sid: str, speed: float):
    logging.info(f"Input text: {text}. sid: {sid}, speed: {speed}")
    sid = int(sid)
    tts = get_pretrained_model(repo_id, speed)

    start = time.time()
    audio = tts.generate(text, sid=sid)
    end = time.time()

    if len(audio.samples) == 0:
        raise ValueError(
            "Error in generating audios. Please read previous error messages."
        )

    duration = len(audio.samples) / audio.sample_rate

    elapsed_seconds = end - start
    rtf = elapsed_seconds / duration

    info = f"""
    Wave duration  : {duration:.3f} s <br/>
    Processing time: {elapsed_seconds:.3f} s <br/>
    RTF: {elapsed_seconds:.3f}/{duration:.3f} = {rtf:.3f} <br/>
    """

    logging.info(info)
    logging.info(f"\nrepo_id: {repo_id}\ntext: {text}\nsid: {sid}\nspeed: {speed}")

    filename = str(uuid.uuid4())
    filename = f"{filename}.wav"
    sf.write(
        filename,
        audio.samples,
        samplerate=audio.sample_rate,
        subtype="PCM_16",
    )

    return filename, build_html_output(info)


demo = gr.Blocks(css=css)


with demo:
    gr.Markdown(title)
    language_choices = list(language_to_models.keys())

    language_radio = gr.Radio(
        label="Idioma",
        choices=language_choices,
        value=language_choices[0],
    )

    model_dropdown = gr.Dropdown(
        choices=language_to_models[language_choices[0]],
        label="Seleccion un modelo",
        value=language_to_models[language_choices[0]][0],
    )

    language_radio.change(
        update_model_dropdown,
        inputs=language_radio,
        outputs=model_dropdown,
    )

    with gr.Tabs():
        with gr.TabItem("Por favor ingresa tu texto"):
            input_text = gr.Textbox(
                label="Texto",
                info="Tu texto",
                lines=3,
                placeholder="Por favor ingresa tu texto aquí",
            )

            input_sid = gr.Textbox(
                label="Speaker ID",
                info="Speaker ID",
                lines=1,
                max_lines=1,
                value="0",
                placeholder="Speaker ID. Valid only for mult-speaker model",
            )

            input_speed = gr.Slider(
                minimum=0.1,
                maximum=10,
                value=1,
                step=0.1,
                label="Velocidad",
            )

            input_button = gr.Button("Convertir")

            output_audio = gr.Audio(label="Salida")

            output_info = gr.HTML(label="Info")

        input_button.click(
            process,
            inputs=[
                language_to_models[language_choices[0]],
                language_to_models[language_choices[0]][0],
                input_text,
                0,
                input_speed,
            ],
            outputs=[
                output_audio,
                output_info,
            ],
        )

    gr.Markdown(description)


def download_espeak_ng_data():
    os.system(
        """
    cd /tmp
    wget -qq https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/espeak-ng-data.tar.bz2
    tar xf espeak-ng-data.tar.bz2
    """
    )


if __name__ == "__main__":
    download_espeak_ng_data()
    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"

    logging.basicConfig(format=formatter, level=logging.INFO)

    demo.launch()