Spaces:
Runtime error
Runtime error
File size: 5,139 Bytes
7e9eac8 d853661 b6e1649 7e9eac8 b6e1649 7e9eac8 b6e1649 7e9eac8 8b829a1 7e9eac8 7fd316f 7e9eac8 7fd316f 7e9eac8 7fd316f 7e9eac8 7fd316f 5ac7b22 c7604ad 7e9eac8 9ab1546 7e9eac8 9ab1546 ebb01fc 7e9eac8 9ab1546 7e9eac8 9e46a7f 7e9eac8 9ab1546 7e9eac8 9ab1546 7e9eac8 7fd316f 7e9eac8 7fd316f 7e9eac8 7fd316f 25441a4 ebb01fc 7fd316f ebb01fc 7fd316f 7e9eac8 7fd316f 7e9eac8 86cd360 7e9eac8 86cd360 ebb01fc 7e9eac8 dd6a80b 6a19fc4 dd6a80b 50e49e1 dd6a80b 7e9eac8 dd6a80b 7e9eac8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
#!/usr/bin/env python3
#
# Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# References:
# https://gradio.app/docs/#dropdown
import logging
import os
import time
import uuid
import gradio as gr
import soundfile as sf
from model import get_pretrained_model, language_to_models
title = "# Equipo 3 - Texto a Voz"
description = """
Este espacio muestra el comó convertir texto a voz con tecnologías como Piper, Kaldi, y Next-gen.
El proceso de convertir sucede en un CPU con un contenedor docker dado por la plataforma Hugging Face.
Si quiere obtener mas información visite los sigientes links:
- <https://github.com/k2-fsa/sherpa-onnx>
Tambien existen aplicaciones android con esta tecnología en el siguiente enlace:
- <https://huggingface.co/csukuangfj/sherpa-onnx-apk/tree/main/tts>
"""
# css style is copied from
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113
css = """
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
"""
def update_model_dropdown(language: str):
if language in language_to_models:
choices = language_to_models[language]
return gr.Dropdown(
choices=choices,
value=choices[0],
interactive=True,
)
raise ValueError(f"Unsupported language: {language}")
def build_html_output(s: str, style: str = "result_item_success"):
return f"""
<div class='result'>
<div class='result_item {style}'>
{s}
</div>
</div>
"""
def process(language: str, repo_id: str, text: str, sid: str, speed: float):
logging.info(f"Input text: {text}. sid: {sid}, speed: {speed}")
sid = int(sid)
tts = get_pretrained_model(repo_id, speed)
start = time.time()
audio = tts.generate(text, sid=sid)
end = time.time()
if len(audio.samples) == 0:
raise ValueError(
"Error in generating audios. Please read previous error messages."
)
duration = len(audio.samples) / audio.sample_rate
elapsed_seconds = end - start
rtf = elapsed_seconds / duration
info = f"""
Duracion del audio : {duration:.3f} s <br/>
Tiempo de Procesado: {elapsed_seconds:.3f} s <br/>
RTF: {elapsed_seconds:.3f}/{duration:.3f} = {rtf:.3f} <br/>
"""
logging.info(info)
logging.info(f"\nrepo_id: {repo_id}\ntext: {text}\nsid: {sid}\nspeed: {speed}")
filename = str(uuid.uuid4())
filename = f"{filename}.wav"
sf.write(
filename,
audio.samples,
samplerate=audio.sample_rate,
subtype="PCM_16",
)
return filename, build_html_output(info)
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
language_choices = list(language_to_models.keys())
with gr.Tabs():
with gr.TabItem("Por favor ingresa tu texto"):
input_text = gr.Textbox(
label="Texto",
info="Tu texto",
lines=3,
placeholder="Por favor ingresa tu texto aquí",
)
input_speed = gr.Slider(
minimum=0.1,
maximum=10,
value=1,
step=0.1,
label="Velocidad",
)
input_button = gr.Button("Convertir")
output_audio = gr.Audio(label="Salida")
output_info = gr.HTML(label="Info")
input_button.click(
process,
inputs=[
gr.Radio(visible=False,value=language_choices[0]),
gr.Dropdown(visible=False,value=language_to_models[language_choices[0]][0]),
input_text,
gr.Textbox(visible=False,value="0"),
input_speed,
],
outputs=[
output_audio,
output_info,
],
)
gr.Markdown(description)
def download_espeak_ng_data():
os.system(
"""
cd /tmp
wget -qq https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/espeak-ng-data.tar.bz2
tar xf espeak-ng-data.tar.bz2
"""
)
if __name__ == "__main__":
download_espeak_ng_data()
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
demo.launch()
|