import streamlit as st import tensorflow as tf import keras import numpy as np from PIL import Image # Load the model model = tf.keras.models.load_model("modelo_celeba_50e.h5", compile=False) # Create a title st.title("Clasificador de rostros") # Add a button to upload an image uploaded_image = st.file_uploader("Cargar imagen") # If an image is uploaded, process it if uploaded_image is not None: # Convert the uploaded file to a PIL Image object image = Image.open(uploaded_image).convert('RGB') image = image.resize((178, 218)) # Display the uploaded image st.image(image, caption="Imagen cargada", use_column_width=True) # Convert the PIL Image object to a NumPy array image_array = np.array(image) / 255.0 image_array = np.expand_dims(image_array, axis=0) # Make a prediction prediction = model.predict(image_array) # Display the prediction st.write("La predicción es:") st.write(prediction)