updated
Browse files
app.py
CHANGED
|
@@ -60,17 +60,19 @@ def main():
|
|
| 60 |
image_class = predict_single_image(image, model, hp)
|
| 61 |
#gradCam.save_and_display_gradcam()
|
| 62 |
st.write(f"Image Class: {image_class}")
|
|
|
|
|
|
|
| 63 |
explanation = explainer.explain_instance(
|
| 64 |
gray_img.astype('double'),
|
| 65 |
model.predict,
|
| 66 |
-
top_labels=
|
| 67 |
hide_color=0,
|
| 68 |
-
num_samples=
|
| 69 |
)
|
| 70 |
temp, mask = explanation.get_image_and_mask(
|
| 71 |
explanation.top_labels[0],
|
| 72 |
positive_only=True,
|
| 73 |
-
num_features=
|
| 74 |
hide_rest=True
|
| 75 |
)
|
| 76 |
|
|
@@ -80,7 +82,7 @@ def main():
|
|
| 80 |
# Save and display LIME explanation
|
| 81 |
lime_explanation_path = 'lime_explanation.png'
|
| 82 |
cv2.imwrite(lime_explanation_path, (xai * 255).astype(np.uint8))
|
| 83 |
-
st.image(
|
| 84 |
|
| 85 |
|
| 86 |
def convert_to_opencv(uploaded_file):
|
|
|
|
| 60 |
image_class = predict_single_image(image, model, hp)
|
| 61 |
#gradCam.save_and_display_gradcam()
|
| 62 |
st.write(f"Image Class: {image_class}")
|
| 63 |
+
|
| 64 |
+
|
| 65 |
explanation = explainer.explain_instance(
|
| 66 |
gray_img.astype('double'),
|
| 67 |
model.predict,
|
| 68 |
+
top_labels=2,
|
| 69 |
hide_color=0,
|
| 70 |
+
num_samples=100
|
| 71 |
)
|
| 72 |
temp, mask = explanation.get_image_and_mask(
|
| 73 |
explanation.top_labels[0],
|
| 74 |
positive_only=True,
|
| 75 |
+
num_features=5,
|
| 76 |
hide_rest=True
|
| 77 |
)
|
| 78 |
|
|
|
|
| 82 |
# Save and display LIME explanation
|
| 83 |
lime_explanation_path = 'lime_explanation.png'
|
| 84 |
cv2.imwrite(lime_explanation_path, (xai * 255).astype(np.uint8))
|
| 85 |
+
st.image((xai * 255).astype(np.uint8), caption="LIME Explanation", use_column_width=True)
|
| 86 |
|
| 87 |
|
| 88 |
def convert_to_opencv(uploaded_file):
|