Spaces:
Sleeping
Sleeping
File size: 1,689 Bytes
81fcd7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
import requests
import json
# Define API keys (ensure these are securely handled and not exposed in public code repositories)
API_KEY = "565c106133mshb641eb3210436aep10e7fbjsn9b12f087ae76"
API_HOST = "ai-content-identifier2.p.rapidapi.com"
# Code for Text AI Detect
def text_check(user_input):
url = f"https://{API_HOST}/text"
payload = {
"text": user_input,
"threshold": 10 # Adjust this if needed to test different sensitivity levels
}
headers = {
"x-rapidapi-key": API_KEY,
"x-rapidapi-host": API_HOST,
"Content-Type": "application/json"
}
try:
response = requests.post(url, json=payload, headers=headers)
response.raise_for_status() # Raises an HTTPError for bad responses
data = response.json()
# Format the output to be user-friendly
if 'success' in data and data['success']:
ai_status = 'Yes' if data['data']['ai'] else 'No'
return (f"AI Content Detected: {ai_status}\n"
f"Confidence: {data['data']['percentage']}%\n"
f"Total Words: {data['data']['stats']['totalWords']}\n"
f"AI Words: {data['data']['stats']['aiWords']}\n"
f"Human Words: {data['data']['stats']['humanWords']}\n"
f"Note: {data['note']}")
else:
return "Failed to analyze text. Please try again."
except requests.exceptions.RequestException as e:
print(f"Error during API call: {e}")
return {"error": str(e)}
demo = gr.Interface(fn=text_check, inputs="textbox", outputs="textbox")
if __name__ == "_main_":
demo.launch() |