Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from sklearn.linear_model import LinearRegression
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
def welcome():
|
9 |
+
return "Welcome to the Sugarcane Growth Analysis App"
|
10 |
+
|
11 |
+
def analyze_data(data):
|
12 |
+
# Assuming the data has a 'Week' column for the week number and a 'Growth' column for the growth value
|
13 |
+
X = data['Week'].values.reshape(-1,1)
|
14 |
+
y = data['Growth'].values.reshape(-1,1)
|
15 |
+
model = LinearRegression()
|
16 |
+
model.fit(X, y)
|
17 |
+
y_pred = model.predict(X)
|
18 |
+
return X, y, y_pred
|
19 |
+
|
20 |
+
def predict_future_growth(data, future_weeks):
|
21 |
+
# Assuming the data has a 'Week' column for the week number and a 'Growth' column for the growth value
|
22 |
+
X = data['Week'].values.reshape(-1,1)
|
23 |
+
y = data['Growth'].values.reshape(-1,1)
|
24 |
+
model = LinearRegression()
|
25 |
+
model.fit(X, y)
|
26 |
+
future_weeks = np.array(future_weeks).reshape(-1,1)
|
27 |
+
future_growth = model.predict(future_weeks)
|
28 |
+
return future_weeks, future_growth
|
29 |
+
|
30 |
+
def main():
|
31 |
+
st.title(welcome())
|
32 |
+
menu = ["Upload File", "Input Weekly Growth", "Upload Previous Years' Growth and Satellite Images"]
|
33 |
+
choice = st.sidebar.selectbox("Menu", menu)
|
34 |
+
|
35 |
+
if choice == "Upload File":
|
36 |
+
file = st.file_uploader("Upload your file", type=["csv", "xlsx", "ppt", "pptx", "doc", "docx"])
|
37 |
+
if file is not None:
|
38 |
+
st.success("File uploaded successfully")
|
39 |
+
|
40 |
+
elif choice == "Input Weekly Growth":
|
41 |
+
data = st.file_uploader("Upload your CSV file", type=["csv"])
|
42 |
+
if data is not None:
|
43 |
+
df = pd.read_csv(data)
|
44 |
+
X, y, y_pred = analyze_data(df)
|
45 |
+
st.write("Week vs Growth")
|
46 |
+
plt.scatter(X, y, color='blue')
|
47 |
+
plt.plot(X, y_pred, color='red')
|
48 |
+
plt.show()
|
49 |
+
|
50 |
+
elif choice == "Upload Previous Years' Growth and Satellite Images":
|
51 |
+
data = st.file_uploader("Upload your CSV file", type=["csv"])
|
52 |
+
image = st.file_uploader("Upload your satellite image", type=["png", "jpg", "jpeg"])
|
53 |
+
future_weeks = st.number_input("Enter the number of future weeks for prediction")
|
54 |
+
if data is not None and image is not None and future_weeks is not None:
|
55 |
+
df = pd.read_csv(data)
|
56 |
+
future_weeks, future_growth = predict_future_growth(df, future_weeks)
|
57 |
+
st.write("Future Weeks vs Predicted Growth")
|
58 |
+
plt.plot(future_weeks, future_growth, color='green')
|
59 |
+
plt.show()
|
60 |
+
st.image(Image.open(image), caption='Satellite Image')
|
61 |
+
|
62 |
+
if __name__ == '__main__':
|
63 |
+
main()
|