Spaces:
Sleeping
Sleeping
File size: 1,518 Bytes
2ab7dd0 041538c 90ccab5 041538c 90ccab5 041538c 2ab7dd0 041538c 90ccab5 041538c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import streamlit as st
import ee
from datetime import datetime
# Earth Engine Authentication
service_account = 'earth-engine-service-account@ee-esmaeilkiani1387.iam.gserviceaccount.com'
credentials = ee.ServiceAccountCredentials(service_account, 'ee-esmaeilkiani1387-1b2c5e812a1d.json')
ee.Initialize(credentials)
# Define a function to fetch historical temperature data
def get_historical_temperature(aoi, start_date, end_date):
dataset = ee.ImageCollection("ECMWF/ERA5/DAILY") \
.filterBounds(aoi) \
.filterDate(start_date, end_date) \
.select('mean_2m_air_temperature')
# Calculate daily mean temperature (in Celsius)
temp_collection = dataset.map(lambda image: image.subtract(273.15).rename('daily_mean_temp'))
# Reduce the collection to mean values over the area
mean_temp = temp_collection.mean().reduceRegion(
reducer=ee.Reducer.mean(),
geometry=aoi,
scale=1000,
bestEffort=True
)
return mean_temp.getInfo()
# Define the area of interest (AOI)
# Example: Assume aoi is defined based on user's GeoJSON or coordinates
aoi = ee.Geometry.Point([48.73168141056203, 31.53180450320103]) # Example coordinates for a specific farm location
# Set start and end dates
start_date = "2023-01-01"
end_date = "2023-12-31"
# Fetch and display temperature data
temp_data = get_historical_temperature(aoi, start_date, end_date)
st.write("Historical Temperature Data (°C):", temp_data['daily_mean_temp'])
|