import streamlit as st import ee from datetime import datetime # Earth Engine Authentication service_account = 'earth-engine-service-account@ee-esmaeilkiani1387.iam.gserviceaccount.com' credentials = ee.ServiceAccountCredentials(service_account, 'ee-esmaeilkiani1387-1b2c5e812a1d.json') ee.Initialize(credentials) # Define a function to fetch historical temperature data def get_historical_temperature(aoi, start_date, end_date): dataset = ee.ImageCollection("ECMWF/ERA5/DAILY") \ .filterBounds(aoi) \ .filterDate(start_date, end_date) \ .select('mean_2m_air_temperature') # Calculate daily mean temperature (in Celsius) temp_collection = dataset.map(lambda image: image.subtract(273.15).rename('daily_mean_temp')) # Reduce the collection to mean values over the area mean_temp = temp_collection.mean().reduceRegion( reducer=ee.Reducer.mean(), geometry=aoi, scale=1000, bestEffort=True ) return mean_temp.getInfo() # Define the area of interest (AOI) # Example: Assume aoi is defined based on user's GeoJSON or coordinates aoi = ee.Geometry.Point([48.73168141056203, 31.53180450320103]) # Example coordinates for a specific farm location # Set start and end dates start_date = "2023-01-01" end_date = "2023-12-31" # Fetch and display temperature data temp_data = get_historical_temperature(aoi, start_date, end_date) st.write("Historical Temperature Data (°C):", temp_data['daily_mean_temp'])