File size: 5,510 Bytes
1cc6224
 
 
 
 
f771594
 
1cc6224
 
f771594
 
ff9d83f
f771594
 
 
 
 
 
 
 
 
 
1cc6224
 
f771594
 
 
1cc6224
f771594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cc6224
f771594
 
 
1cc6224
f771594
 
 
 
 
1cc6224
f771594
1cc6224
b994ffa
f771594
1cc6224
 
141a5fb
 
 
7d198a1
c990a6c
7d198a1
1cc6224
f771594
1cc6224
f771594
1cc6224
 
f771594
1cc6224
 
9960694
d746470
1cc6224
 
f771594
756a809
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt"  # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]
system_message = "You are a restaurant recommending chatbot that suggests one restaurant based on the criteria the user provides."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]
# Attempt to load the necessary models and provide feedback on success or failure
try:
    retrieval_model = SentenceTransformer(retrieval_model_name)
    print("Models loaded successfully.")
except Exception as e:
    print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
    """
    Load and preprocess text from a file, removing empty lines and stripping whitespace.
    """
    try:
        with open(filename, 'r', encoding='utf-8') as file:
            segments = [line.strip() for line in file if line.strip()]
        print("Text loaded and preprocessed successfully.")
        return segments
    except Exception as e:
        print(f"Failed to load or preprocess text: {e}")
        return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
    """
    Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
    This version finds the best match based on the content of the query.
    """
    try:
        # Lowercase the query for better matching
        lower_query = user_query.lower()
        # Encode the query and the segments
        query_embedding = retrieval_model.encode(lower_query)
        segment_embeddings = retrieval_model.encode(segments)
        # Compute cosine similarities between the query and the segments
        similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
        # Find the index of the most similar segment
        best_idx = similarities.argmax()
        # Return the most relevant segment
        return segments[best_idx]
    except Exception as e:
        print(f"Error in finding relevant segment: {e}")
        return ""
def generate_response(user_query, relevant_segment):
    """
    Generate a response emphasizing the bot's capability in suggesting a restaurant.
    """
    try:
        user_message = f"Here is a local restaurant based on your information: {relevant_segment}"
        # Append user's message to messages list
        messages.append({"role": "user", "content": user_message})
        response = openai.ChatCompletion.create(
            model="gpt-4o",
            messages=messages,
            max_tokens=150,
            temperature=0.2,
            top_p=1,
            frequency_penalty=0,
            presence_penalty=0
        )
        # Extract the response text
        output_text = response['choices'][0]['message']['content'].strip()
        # Append assistant's message to messages list for context
        messages.append({"role": "assistant", "content": output_text})
        return output_text
    except Exception as e:
        print(f"Error in generating response: {e}")
        return f"Error in generating response: {e}"
def query_model(question):
    """
    Process a question, find relevant information, and generate a response.
    """
    if question == "":
        return "Give me your preferences..."
    relevant_segment = find_relevant_segment(question, segments)
    if not relevant_segment:
        return "Could not find specific information. Please refine your question."
    response = generate_response(question, relevant_segment)
    return response
# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# Welcome to Ethical Eats Explorer!
## Your AI-driven assistant for restaurant recs in Seattle. Created by Saranya, Cindy, and Liana of the 2024 Kode With Klossy Seattle Camp.
"""
topics = """
### Please give me your restaurant preferences:
- Dietary Restrictions
- Cuisine Preferences (optional)
    - Cuisines: American, Indian, Middle Eastern, Chinese, Italian, Thai, Hawaiian-Korean, Japanese, Ethiopian, Pakistani, Mexican, Ghanaian, Vietnamese, Filipino, Spanish, Turkish
- Budget Preferences (Low: $0 - $20, Moderate: $20 - $30, High: $30+ - per person)
Please send your message in the format: "Could you give me a (cuisine) restaurant with (dietary restriction) options that is (budget) budget?"
"""
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
    gr.Markdown(welcome_message)  # Display the formatted welcome message
    with gr.Row():
        with gr.Column():
            gr.Markdown(topics)  # Show the topics on the left side
    with gr.Row():
        with gr.Column():
            question = gr.Textbox(label="Your question", placeholder="Give me your information...")
            answer = gr.Textbox(label="Explorer's Response", placeholder="Explorer will respond here...", interactive=False, lines=10)
            submit_button = gr.Button("Submit")
            submit_button.click(fn=query_model, inputs=question, outputs=answer)
# Launch the Gradio app to allow user interaction
demo.launch(share=True)