efecelik commited on
Commit
b3a6447
·
verified ·
1 Parent(s): e428513

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -0
app.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import gradio as gr
3
+ import numpy as np
4
+ from gensim.models import Word2Vec
5
+
6
+ # Load the logistic regression model
7
+ with open('llogistic_model.pkl', 'rb') as file:
8
+ model = pickle.load(file)
9
+
10
+ # Load the Word2Vec model
11
+ word2vec_model = Word2Vec.load('word2vec_model.model')
12
+
13
+ def sentence_vector(tokens, model):
14
+ """Calculate the sentence vector by averaging word vectors."""
15
+ valid_words = [word for word in tokens if word in model.wv]
16
+ if valid_words:
17
+ return np.mean(model.wv[valid_words], axis=0)
18
+ else:
19
+ return np.zeros(model.vector_size)
20
+
21
+ def classify_comment(comment):
22
+ """Classify the sentiment of a comment as bearish, bullish, or neutral."""
23
+ try:
24
+ # Tokenize the comment
25
+ tokens = comment.lower().split()
26
+
27
+ # Generate sentence vector using Word2Vec
28
+ processed_comment = sentence_vector(tokens, word2vec_model).reshape(1, -1)
29
+
30
+ # Predict sentiment
31
+ prediction = model.predict(processed_comment)[0]
32
+
33
+ # Map prediction to labels (ensure the model output aligns with these labels)
34
+ sentiment_map = {0: "neutral", 1: "bullish", 2: "bearish"}
35
+ sentiment = sentiment_map.get(prediction, "unknown")
36
+
37
+ return sentiment
38
+ except Exception as e:
39
+ return f"Error: {str(e)}"
40
+
41
+ # Create Gradio interface
42
+ interface = gr.Interface(
43
+ fn=classify_comment,
44
+ inputs=gr.Textbox(label="Enter your comment (e.g., about BTC or stock markets):"),
45
+ outputs=gr.Label(label="Sentiment"),
46
+ title="BTC Sentiment Analyzer",
47
+ description="Predict whether a comment is bullish, bearish, or neutral using a logistic regression model."
48
+ )
49
+
50
+ # Launch the Gradio interface
51
+ interface.launch()