Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,568 Bytes
db7f48e 9892334 55fda6e a8eb6d6 9892334 32f1452 9892334 32f1452 9892334 5c1b749 9892334 c027592 32f1452 c027592 9892334 32f1452 9892334 32f1452 9892334 e45b340 189acad c027592 9892334 c027592 9892334 db7f48e 9892334 db7f48e 32f1452 aa88621 db7f48e 9892334 aa88621 9892334 2ef77ff 9892334 32f1452 9892334 5c1b749 9892334 5c1b749 9892334 aa88621 9892334 aa88621 a8eb6d6 e45b340 9892334 32f1452 9892334 32f1452 9892334 db7f48e 9892334 32f1452 9892334 db7f48e 9892334 3fa5c52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import gradio as gr
import torch
import numpy as np
import spaces
from PIL import Image
from huggingface_hub import hf_hub_download
from utils import utils, tools, preprocess
BASE_MODEL_REPO_ID = "neta-art/neta-xl-2.0"
BASE_MODEL_FILENAME = "neta-xl-v2.fp16.safetensors"
VAE_PATH = "madebyollin/sdxl-vae-fp16-fix"
CONTROLNEXT_REPO_ID = "Pbihao/ControlNeXt"
UNET_FILENAME = "ControlAny-SDXL/anime_canny/unet.safetensors"
CONTROLNET_FILENAME = "ControlAny-SDXL/anime_canny/controlnet.safetensors"
CACHE_DIR = None
DEFAULT_PROMPT = ""
DEFAULT_NEGATIVE_PROMPT = "worst quality, abstract, clumsy pose, deformed hand, dynamic malformation, fused fingers, extra digits, fewer digits, fewer fingers, extra fingers, extra arm, missing arm, extra leg, missing leg, signature, artist name, multi views, disfigured, ugly"
def ui():
device = "cuda" if torch.cuda.is_available() else "cpu"
model_file = hf_hub_download(
repo_id=BASE_MODEL_REPO_ID,
filename=BASE_MODEL_FILENAME,
cache_dir=CACHE_DIR,
)
unet_file = hf_hub_download(
repo_id=CONTROLNEXT_REPO_ID,
filename=UNET_FILENAME,
cache_dir=CACHE_DIR,
)
controlnet_file = hf_hub_download(
repo_id=CONTROLNEXT_REPO_ID,
filename=CONTROLNET_FILENAME,
cache_dir=CACHE_DIR,
)
pipeline = tools.get_pipeline(
pretrained_model_name_or_path=model_file,
unet_model_name_or_path=unet_file,
controlnet_model_name_or_path=controlnet_file,
vae_model_name_or_path=VAE_PATH,
load_weight_increasement=True,
device=device,
hf_cache_dir=CACHE_DIR,
use_safetensors=True,
)
schedulers = ['Euler A', 'UniPC', 'Euler', 'DDIM', 'DDPM']
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(f"""
# [ControlNeXt-SDXL](https://github.com/dvlab-research/ControlNeXt) Demo (Anime Canny)
Base model: [Neta-Art-XL-2.0](https://civitai.com/models/410737/neta-art-xl)
""")
with gr.Row():
with gr.Column(scale=9):
prompt = gr.Textbox(label='Prompt', value=DEFAULT_PROMPT, lines=3, placeholder='prompt', container=False)
negative_prompt = gr.Textbox(label='Negative Prompt', value=DEFAULT_NEGATIVE_PROMPT, lines=3, placeholder='negative prompt', container=False)
with gr.Column(scale=1):
generate_button = gr.Button("Generate", variant='primary', min_width=96)
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
control_image = gr.Image(
value=None,
label='Condition',
sources=['upload'],
type='pil',
height=512,
image_mode='RGB',
format='png',
show_download_button=True,
show_share_button=True,
)
with gr.Accordion(label='Preprocess', open=True):
with gr.Row():
threshold1 = gr.Slider(minimum=-1, maximum=255, step=1, value=100, label='Threshold 1', info='-1 for auto')
threshold2 = gr.Slider(minimum=-1, maximum=255, step=1, value=200, label='Threshold 2', info='-1 for auto')
process_button = gr.Button("Process", variant='primary', min_width=96, scale=0)
with gr.Row():
scheduler = gr.Dropdown(
label='Scheduler',
choices=schedulers,
value='Euler A',
multiselect=False,
allow_custom_value=False,
filterable=True,
)
num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, value=28, label='Steps')
with gr.Row():
cfg_scale = gr.Slider(minimum=1, maximum=30, step=1, value=7.5, label='CFG Scale')
controlnet_scale = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.35, label='ControlNet Scale')
with gr.Row():
seed = gr.Number(label='Seed', step=1, precision=0, value=-1)
with gr.Column(scale=1):
with gr.Row():
output = gr.Gallery(
label='Output',
value=None,
object_fit='scale-down',
columns=4,
height=512,
show_download_button=True,
show_share_button=True,
)
with gr.Row():
examples = gr.Examples(
label='Examples',
examples=[
[
'best quality, 1girl, solo, open hand, outdoors, street',
'examples/example_1.jpg',
],
],
inputs=[
prompt,
control_image,
],
cache_examples=False,
)
@spaces.GPU
def generate(
prompt,
control_image,
negative_prompt,
cfg_scale,
controlnet_scale,
num_inference_steps,
scheduler,
seed,
):
pipeline.scheduler = tools.get_scheduler(scheduler, pipeline.scheduler.config)
generator = torch.Generator(device=device).manual_seed(max(0, min(seed, np.iinfo(np.int32).max))) if seed != -1 else None
if control_image is None:
raise gr.Error('Please upload an image.')
width, height = utils.around_reso(control_image.width, control_image.height, reso=1024, max_width=2048, max_height=2048, divisible=32)
control_image = control_image.resize((width, height)).convert('RGB')
with torch.autocast(device):
output_images = pipeline.__call__(
prompt=prompt,
negative_prompt=negative_prompt,
controlnet_image=control_image,
controlnet_scale=controlnet_scale,
width=width,
height=height,
generator=generator,
guidance_scale=cfg_scale,
num_inference_steps=num_inference_steps,
).images
return output_images
def process(
image,
threshold1,
threshold2,
):
threshold1 = None if threshold1 == -1 else threshold1
threshold2 = None if threshold2 == -1 else threshold2
return preprocess.canny_extractor(image, threshold1, threshold2)
generate_button.click(
fn=generate,
inputs=[prompt, control_image, negative_prompt, cfg_scale, controlnet_scale, num_inference_steps, scheduler, seed],
outputs=[output],
)
process_button.click(
fn=process,
inputs=[control_image, threshold1, threshold2],
outputs=[control_image],
)
return demo
if __name__ == '__main__':
demo = ui()
demo.queue().launch()
|