Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,175 Bytes
9892334 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import math
from typing import Tuple, Union, Optional
from safetensors.torch import load_file
from transformers import PretrainedConfig
def count_num_parameters_of_safetensors_model(safetensors_path):
state_dict = load_file(safetensors_path)
return sum(p.numel() for p in state_dict.values())
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, revision: str, subfolder: str = None
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, revision=revision, subfolder=subfolder
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "CLIPTextModelWithProjection":
from transformers import CLIPTextModelWithProjection
return CLIPTextModelWithProjection
else:
raise ValueError(f"{model_class} is not supported.")
def fix_clip_text_encoder_position_ids(text_encoder):
if hasattr(text_encoder.text_model.embeddings, "position_ids"):
text_encoder.text_model.embeddings.position_ids = text_encoder.text_model.embeddings.position_ids.long()
def load_controlnext_unet_state_dict(unet_sd, controlnext_unet_sd):
assert all(
k in unet_sd for k in controlnext_unet_sd), f"controlnext unet state dict is not compatible with unet state dict, missing keys: {set(controlnext_unet_sd.keys()) - set(unet_sd.keys())}, extra keys: {set(unet_sd.keys()) - set(controlnext_unet_sd.keys())}"
for k in controlnext_unet_sd.keys():
unet_sd[k] = controlnext_unet_sd[k]
return unet_sd
def convert_to_controlnext_unet_state_dict(state_dict):
import re
pattern = re.compile(r'.*attn2.*to_out.*')
state_dict = {k: v for k, v in state_dict.items() if pattern.match(k)}
# state_dict = extract_unet_state_dict(state_dict)
if is_sdxl_state_dict(state_dict):
state_dict = convert_sdxl_unet_state_dict_to_diffusers(state_dict)
return state_dict
def make_unet_conversion_map():
unet_conversion_map_layer = []
for i in range(3): # num_blocks is 3 in sdxl
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
# if i > 0: commentout for sdxl
# no attention layers in up_blocks.0
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2*j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0.", "norm1."),
("in_layers.2.", "conv1."),
("out_layers.0.", "norm2."),
("out_layers.3.", "conv2."),
("emb_layers.1.", "time_emb_proj."),
("skip_connection.", "conv_shortcut."),
]
unet_conversion_map = []
for sd, hf in unet_conversion_map_layer:
if "resnets" in hf:
for sd_res, hf_res in unet_conversion_map_resnet:
unet_conversion_map.append((sd + sd_res, hf + hf_res))
else:
unet_conversion_map.append((sd, hf))
for j in range(2):
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
sd_time_embed_prefix = f"time_embed.{j*2}."
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
for j in range(2):
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
sd_label_embed_prefix = f"label_emb.0.{j*2}."
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
unet_conversion_map.append(("out.0.", "conv_norm_out."))
unet_conversion_map.append(("out.2.", "conv_out."))
return unet_conversion_map
def convert_unet_state_dict(src_sd, conversion_map):
converted_sd = {}
for src_key, value in src_sd.items():
src_key_fragments = src_key.split(".")[:-1] # remove weight/bias
while len(src_key_fragments) > 0:
src_key_prefix = ".".join(src_key_fragments) + "."
if src_key_prefix in conversion_map:
converted_prefix = conversion_map[src_key_prefix]
converted_key = converted_prefix + src_key[len(src_key_prefix):]
converted_sd[converted_key] = value
break
src_key_fragments.pop(-1)
assert len(src_key_fragments) > 0, f"key {src_key} not found in conversion map"
return converted_sd
def convert_sdxl_unet_state_dict_to_diffusers(sd):
unet_conversion_map = make_unet_conversion_map()
conversion_dict = {sd: hf for sd, hf in unet_conversion_map}
return convert_unet_state_dict(sd, conversion_dict)
def extract_unet_state_dict(state_dict):
unet_sd = {}
UNET_KEY_PREFIX = "model.diffusion_model."
for k, v in state_dict.items():
if k.startswith(UNET_KEY_PREFIX):
unet_sd[k[len(UNET_KEY_PREFIX):]] = v
return unet_sd
def is_sdxl_state_dict(state_dict):
return any(key.startswith('input_blocks') for key in state_dict.keys())
def contains_unet_keys(state_dict):
UNET_KEY_PREFIX = "model.diffusion_model."
return any(k.startswith(UNET_KEY_PREFIX) for k in state_dict.keys())
def load_safetensors(model, safetensors_path, strict=True, load_weight_increasement=False):
if not load_weight_increasement:
state_dict = load_file(safetensors_path)
model.load_state_dict(state_dict, strict=strict)
else:
state_dict = load_file(safetensors_path)
pretrained_state_dict = model.state_dict()
for k in state_dict.keys():
state_dict[k] = state_dict[k] + pretrained_state_dict[k]
model.load_state_dict(state_dict, strict=False)
def log_model_info(model, name):
sd = model.state_dict() if hasattr(model, "state_dict") else model
print(
f"{name}:",
f" number of parameters: {sum(p.numel() for p in sd.values())}",
f" dtype: {sd[next(iter(sd))].dtype}",
sep='\n'
)
def around_reso(img_w, img_h, reso: Union[Tuple[int, int], int], divisible: Optional[int] = None, max_width=None, max_height=None) -> Tuple[int, int]:
r"""
w*h = reso*reso
w/h = img_w/img_h
=> w = img_ar*h
=> img_ar*h^2 = reso
=> h = sqrt(reso / img_ar)
"""
reso = reso if isinstance(reso, tuple) else (reso, reso)
divisible = divisible or 1
if img_w * img_h <= reso[0] * reso[1] and (not max_width or img_w <= max_width) and (not max_height or img_h <= max_height) and img_w % divisible == 0 and img_h % divisible == 0:
return (img_w, img_h)
img_ar = img_w / img_h
around_h = math.sqrt(reso[0]*reso[1] / img_ar)
around_w = img_ar * around_h // divisible * divisible
if max_width and around_w > max_width:
around_h = around_h * max_width // around_w
around_w = max_width
elif max_height and around_h > max_height:
around_w = around_w * max_height // around_h
around_h = max_height
around_h = min(around_h, max_height) if max_height else around_h
around_w = min(around_w, max_width) if max_width else around_w
around_h = int(around_h // divisible * divisible)
around_w = int(around_w // divisible * divisible)
return (around_w, around_h)
|