Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,138 Bytes
db7f48e 9892334 db7f48e 9892334 db7f48e 9892334 db7f48e 9892334 db7f48e 9892334 db7f48e 9892334 db7f48e 9892334 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import gradio as gr
import torch
import numpy as np
from huggingface_hub import hf_hub_download
from utils import utils, tools, preprocess
# BASE_MODEL_PATH = "stablediffusionapi/neta-art-xl-v2"
VAE_PATH = "madebyollin/sdxl-vae-fp16-fix"
REPO_ID = "Pbihao/ControlNeXt"
UNET_FILENAME = "ControlAny-SDXL/anime_canny/unet.safetensors"
CONTROLNET_FILENAME = "ControlAny-SDXL/anime_canny/controlnet.safetensors"
CACHE_DIR = None
def ui():
device = "cuda" if torch.cuda.is_available() else "cpu"
model_file = hf_hub_download(
repo_id='Lykon/AAM_XL_AnimeMix',
filename='AAM_XL_Anime_Mix.safetensors',
cache_dir=CACHE_DIR,
)
unet_file = hf_hub_download(
repo_id=REPO_ID,
filename=UNET_FILENAME,
cache_dir=CACHE_DIR,
)
controlnet_file = hf_hub_download(
repo_id=REPO_ID,
filename=CONTROLNET_FILENAME,
cache_dir=CACHE_DIR,
)
pipeline = tools.get_pipeline(
pretrained_model_name_or_path=model_file,
unet_model_name_or_path=unet_file,
controlnet_model_name_or_path=controlnet_file,
vae_model_name_or_path=VAE_PATH,
load_weight_increasement=True,
device=device,
hf_cache_dir=CACHE_DIR,
use_safetensors=True,
enable_xformers_memory_efficient_attention=True,
)
preprocessors = ['canny']
schedulers = ['Euler A', 'UniPC', 'Euler', 'DDIM', 'DDPM']
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(f"""
# [ControlNeXt](https://github.com/dvlab-research/ControlNeXt) Official Demo
""")
with gr.Row():
with gr.Column(scale=9):
prompt = gr.Textbox(lines=3, placeholder='prompt', container=False)
negative_prompt = gr.Textbox(lines=3, placeholder='negative prompt', container=False)
with gr.Column(scale=1):
generate_button = gr.Button("Generate", variant='primary', min_width=96)
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
control_image = gr.Image(
value=None,
label='Condition',
sources=['upload'],
type='pil',
height=512,
show_download_button=True,
show_share_button=True,
)
with gr.Row():
scheduler = gr.Dropdown(
label='Scheduler',
choices=schedulers,
value='Euler A',
multiselect=False,
allow_custom_value=False,
filterable=True,
)
num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, value=20, label='Steps')
with gr.Row():
cfg_scale = gr.Slider(minimum=1, maximum=30, step=1, value=7.5, label='CFG Scale')
controlnet_scale = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label='ControlNet Scale')
with gr.Row():
seed = gr.Number(label='Seed', step=1, precision=0, value=-1)
with gr.Row():
processor = gr.Dropdown(
label='Image Preprocessor',
choices=preprocessors,
value='canny',
)
process_button = gr.Button("Process", variant='primary', min_width=96, scale=0)
with gr.Column(scale=1):
output = gr.Gallery(
label='Output',
value=None,
object_fit='scale-down',
columns=4,
height=512,
show_download_button=True,
show_share_button=True,
)
def generate(
prompt,
control_image,
negative_prompt,
cfg_scale,
controlnet_scale,
num_inference_steps,
scheduler,
seed,
):
pipeline.scheduler = tools.get_scheduler(scheduler, pipeline.scheduler.config)
generator = torch.Generator(device=device).manual_seed(max(0, min(seed, np.iinfo(np.int32).max))) if seed != -1 else None
if control_image is None:
raise gr.Error('Please upload an image.')
width, height = utils.around_reso(control_image.width, control_image.height, reso=1024, max_width=2048, max_height=2048, divisible=32)
control_image = control_image.resize((width, height)).convert('RGB')
with torch.autocast(device):
output_images = pipeline.__call__(
prompt=prompt,
negative_prompt=negative_prompt,
controlnet_image=control_image,
controlnet_scale=controlnet_scale,
width=width,
height=height,
generator=generator,
guidance_scale=cfg_scale,
num_inference_steps=num_inference_steps,
).images
return output_images
def process(
image,
processor,
):
if image is None:
raise gr.Error('Please upload an image.')
processor = preprocess.get_extractor(processor)
image = processor(image)
return image
generate_button.click(
fn=generate,
inputs=[prompt, control_image, negative_prompt, cfg_scale, controlnet_scale, num_inference_steps, scheduler, seed],
outputs=[output],
)
process_button.click(
fn=process,
inputs=[control_image, processor],
outputs=[control_image],
)
return demo
if __name__ == '__main__':
demo = ui()
demo.queue().launch()
|