File size: 6,999 Bytes
db7f48e
 
9892334
55fda6e
a8eb6d6
9892334
 
 
 
 
 
 
 
 
5c1b749
 
 
9892334
 
 
c027592
 
 
 
 
9892334
 
 
 
 
 
 
 
 
 
e45b340
189acad
c027592
9892334
 
 
 
 
 
c027592
9892334
 
 
 
db7f48e
9892334
 
 
 
 
 
 
 
db7f48e
7a81b42
 
 
db7f48e
 
9892334
5c1b749
 
9892334
 
 
 
 
 
 
 
 
 
 
2ef77ff
 
9892334
 
 
2ef77ff
 
 
 
 
 
 
9892334
 
 
 
 
 
 
 
 
5c1b749
9892334
 
5c1b749
9892334
 
 
 
 
 
 
 
 
 
 
db7f48e
9892334
a8eb6d6
 
 
 
 
 
 
 
 
 
 
 
e45b340
9892334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db7f48e
 
9892334
 
 
 
 
 
 
 
db7f48e
9892334
 
3fa5c52
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import gradio as gr
import torch
import numpy as np
import spaces
from PIL import Image
from huggingface_hub import hf_hub_download
from utils import utils, tools, preprocess

VAE_PATH = "madebyollin/sdxl-vae-fp16-fix"
REPO_ID = "Pbihao/ControlNeXt"
UNET_FILENAME = "ControlAny-SDXL/anime_canny/unet.safetensors"
CONTROLNET_FILENAME = "ControlAny-SDXL/anime_canny/controlnet.safetensors"
CACHE_DIR = None

DEFAULT_PROMPT = ""
DEFAULT_NEGATIVE_PROMPT = "worst quality, abstract, clumsy pose, deformed hand, dynamic malformation, fused fingers, extra digits, fewer digits, fewer fingers, extra fingers, extra arm, missing arm, extra leg, missing leg, signature, artist name, multi views, disfigured, ugly"


def ui():
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model_file = hf_hub_download(
        repo_id='neta-art/neta-xl-2.0',
        filename='neta-xl-v2.fp16.safetensors',
        cache_dir=CACHE_DIR,
    )
    unet_file = hf_hub_download(
        repo_id=REPO_ID,
        filename=UNET_FILENAME,
        cache_dir=CACHE_DIR,
    )
    controlnet_file = hf_hub_download(
        repo_id=REPO_ID,
        filename=CONTROLNET_FILENAME,
        cache_dir=CACHE_DIR,
    )

    pipeline = tools.get_pipeline(
        pretrained_model_name_or_path=model_file,
        unet_model_name_or_path=unet_file,
        controlnet_model_name_or_path=controlnet_file,
        vae_model_name_or_path=VAE_PATH,
        load_weight_increasement=True,
        device=device,
        hf_cache_dir=CACHE_DIR,
        use_safetensors=True,
    )

    preprocessors = ['canny']
    schedulers = ['Euler A', 'UniPC', 'Euler', 'DDIM', 'DDPM']

    css = """
    #col-container {
        margin: 0 auto;
        max-width: 520px;
    }
    """

    with gr.Blocks(css=css) as demo:
        gr.Markdown(f"""
        # ControlNeXt-SDXL Demo
        The Gradio has bug currently and is just for demo.
        More better results please refer to the [official project page](https://github.com/dvlab-research/ControlNeXt).
        """)
        with gr.Row():
            with gr.Column(scale=9):
                prompt = gr.Textbox(value=DEFAULT_PROMPT, lines=3, placeholder='prompt', container=False)
                negative_prompt = gr.Textbox(value=DEFAULT_NEGATIVE_PROMPT, lines=3, placeholder='negative prompt', container=False)
            with gr.Column(scale=1):
                generate_button = gr.Button("Generate", variant='primary', min_width=96)
        with gr.Row():
            with gr.Column(scale=1):
                with gr.Row():
                    control_image = gr.Image(
                        value=None,
                        label='Condition',
                        sources=['upload'],
                        type='pil',
                        height=512,
                        image_mode='RGB',
                        format='png',
                        show_download_button=True,
                        show_share_button=True,
                    )
                with gr.Row():
                    processor = gr.Dropdown(
                        label='Image Preprocessor',
                        choices=preprocessors,
                        value='canny',
                    )
                    process_button = gr.Button("Process", variant='primary', min_width=96, scale=0)
                with gr.Row():
                    scheduler = gr.Dropdown(
                        label='Scheduler',
                        choices=schedulers,
                        value='Euler A',
                        multiselect=False,
                        allow_custom_value=False,
                        filterable=True,
                    )
                    num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, value=28, label='Steps')
                with gr.Row():
                    cfg_scale = gr.Slider(minimum=1, maximum=30, step=1, value=7.5, label='CFG Scale')
                    controlnet_scale = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.35, label='ControlNet Scale')
                with gr.Row():
                    seed = gr.Number(label='Seed', step=1, precision=0, value=-1)
            with gr.Column(scale=1):
                output = gr.Gallery(
                    label='Output',
                    value=None,
                    object_fit='scale-down',
                    columns=4,
                    height=512,
                    show_download_button=True,
                    show_share_button=True,
                )

        with gr.Row():
            example = gr.Examples(
                examples=[
                    'best quality, 1girl, solo, open hand, outdoors, street',
                    Image.open('examples/example_1.jpg'),
                ],
                inputs=[
                    prompt,
                    control_image,
                ]
            )

        @spaces.GPU
        def generate(
            prompt,
            control_image,
            negative_prompt,
            cfg_scale,
            controlnet_scale,
            num_inference_steps,
            scheduler,
            seed,
        ):
            pipeline.scheduler = tools.get_scheduler(scheduler, pipeline.scheduler.config)

            generator = torch.Generator(device=device).manual_seed(max(0, min(seed, np.iinfo(np.int32).max))) if seed != -1 else None

            if control_image is None:
                raise gr.Error('Please upload an image.')
            width, height = utils.around_reso(control_image.width, control_image.height, reso=1024, max_width=2048, max_height=2048, divisible=32)
            control_image = control_image.resize((width, height)).convert('RGB')

            with torch.autocast(device):
                output_images = pipeline.__call__(
                    prompt=prompt,
                    negative_prompt=negative_prompt,
                    controlnet_image=control_image,
                    controlnet_scale=controlnet_scale,
                    width=width,
                    height=height,
                    generator=generator,
                    guidance_scale=cfg_scale,
                    num_inference_steps=num_inference_steps,
                ).images

            return output_images

        def process(
            image,
            processor,
        ):
            if image is None:
                raise gr.Error('Please upload an image.')
            processor = preprocess.get_extractor(processor)
            image = processor(image)
            return image

        generate_button.click(
            fn=generate,
            inputs=[prompt, control_image, negative_prompt, cfg_scale, controlnet_scale, num_inference_steps, scheduler, seed],
            outputs=[output],
        )

        process_button.click(
            fn=process,
            inputs=[control_image, processor],
            outputs=[control_image],
        )

    return demo


if __name__ == '__main__':
    demo = ui()
    demo.queue().launch()