File size: 6,334 Bytes
9892334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import torch
from torch import nn
from diffusers import UniPCMultistepScheduler, AutoencoderKL
from safetensors.torch import load_file
from pipeline.pipeline_controlnext import StableDiffusionXLControlNeXtPipeline
from models.unet import UNet2DConditionModel, UNET_CONFIG
from models.controlnet import ControlNetModel
from . import utils


def get_pipeline(
    pretrained_model_name_or_path,
    unet_model_name_or_path,
    controlnet_model_name_or_path,
    vae_model_name_or_path=None,
    lora_path=None,
    load_weight_increasement=False,
    enable_xformers_memory_efficient_attention=False,
    revision=None,
    variant=None,
    hf_cache_dir=None,
    use_safetensors=True,
    device=None,
):
    pipeline_init_kwargs = {}

    if controlnet_model_name_or_path is not None:
        print(f"loading controlnet from {controlnet_model_name_or_path}")
        controlnet = ControlNetModel()
        if controlnet_model_name_or_path is not None:
            utils.load_safetensors(controlnet, controlnet_model_name_or_path)
        else:
            controlnet.scale = nn.Parameter(torch.tensor(0.), requires_grad=False)
        controlnet.to(device, dtype=torch.float32)
        pipeline_init_kwargs["controlnet"] = controlnet

        utils.log_model_info(controlnet, "controlnext")
    else:
        print(f"no controlnet")

    print(f"loading unet from {pretrained_model_name_or_path}")
    if os.path.isfile(pretrained_model_name_or_path):
        # load unet from local checkpoint
        unet_sd = load_file(pretrained_model_name_or_path) if pretrained_model_name_or_path.endswith(".safetensors") else torch.load(pretrained_model_name_or_path)
        unet_sd = utils.extract_unet_state_dict(unet_sd)
        unet_sd = utils.convert_sdxl_unet_state_dict_to_diffusers(unet_sd)
        unet = UNet2DConditionModel.from_config(UNET_CONFIG)
        unet.load_state_dict(unet_sd, strict=True)
    else:
        from huggingface_hub import hf_hub_download
        filename = "diffusion_pytorch_model"
        if variant == "fp16":
            filename += ".fp16"
        if use_safetensors:
            filename += ".safetensors"
        else:
            filename += ".pt"
        unet_file = hf_hub_download(
            repo_id=pretrained_model_name_or_path,
            filename="unet" + '/' + filename,
            cache_dir=hf_cache_dir,
        )
        unet_sd = load_file(unet_file) if unet_file.endswith(".safetensors") else torch.load(pretrained_model_name_or_path)
        unet_sd = utils.extract_unet_state_dict(unet_sd)
        unet_sd = utils.convert_sdxl_unet_state_dict_to_diffusers(unet_sd)
        unet = UNet2DConditionModel.from_config(UNET_CONFIG)
        unet.load_state_dict(unet_sd, strict=True)
    unet = unet.to(dtype=torch.float16)
    utils.log_model_info(unet, "unet")

    if unet_model_name_or_path is not None:
        print(f"loading controlnext unet from {unet_model_name_or_path}")
        controlnext_unet_sd = load_file(unet_model_name_or_path)
        controlnext_unet_sd = utils.convert_to_controlnext_unet_state_dict(controlnext_unet_sd)
        unet_sd = unet.state_dict()
        assert all(
            k in unet_sd for k in controlnext_unet_sd), \
            f"controlnext unet state dict is not compatible with unet state dict, missing keys: {set(controlnext_unet_sd.keys()) - set(unet_sd.keys())}, extra keys: {set(unet_sd.keys()) - set(controlnext_unet_sd.keys())}"
        if load_weight_increasement:
            print("loading weight increasement")
            for k in controlnext_unet_sd.keys():
                controlnext_unet_sd[k] = controlnext_unet_sd[k] + unet_sd[k]
        unet.load_state_dict(controlnext_unet_sd, strict=False)
        utils.log_model_info(controlnext_unet_sd, "controlnext unet")

    pipeline_init_kwargs["unet"] = unet

    if vae_model_name_or_path is not None:
        print(f"loading vae from {vae_model_name_or_path}")
        vae = AutoencoderKL.from_pretrained(vae_model_name_or_path, cache_dir=hf_cache_dir, torch_dtype=torch.float16).to(device)
        pipeline_init_kwargs["vae"] = vae

    print(f"loading pipeline from {pretrained_model_name_or_path}")
    if os.path.isfile(pretrained_model_name_or_path):
        pipeline: StableDiffusionXLControlNeXtPipeline = StableDiffusionXLControlNeXtPipeline.from_single_file(
            pretrained_model_name_or_path,
            use_safetensors=pretrained_model_name_or_path.endswith(".safetensors"),
            local_files_only=True,
            cache_dir=hf_cache_dir,
            **pipeline_init_kwargs,
        )
    else:
        pipeline: StableDiffusionXLControlNeXtPipeline = StableDiffusionXLControlNeXtPipeline.from_pretrained(
            pretrained_model_name_or_path,
            revision=revision,
            variant=variant,
            use_safetensors=use_safetensors,
            cache_dir=hf_cache_dir,
            **pipeline_init_kwargs,
        )

    pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
    pipeline.set_progress_bar_config()
    pipeline = pipeline.to(device, dtype=torch.float16)

    if lora_path is not None:
        pipeline.load_lora_weights(lora_path)
    if enable_xformers_memory_efficient_attention:
        pipeline.enable_xformers_memory_efficient_attention()

    return pipeline


def get_scheduler(
    scheduler_name,
    scheduler_config,
):
    if scheduler_name == 'Euler A':
        from diffusers.schedulers import EulerAncestralDiscreteScheduler
        scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config)
    elif scheduler_name == 'UniPC':
        from diffusers.schedulers import UniPCMultistepScheduler
        scheduler = UniPCMultistepScheduler.from_config(scheduler_config)
    elif scheduler_name == 'Euler':
        from diffusers.schedulers import EulerDiscreteScheduler
        scheduler = EulerDiscreteScheduler.from_config(scheduler_config)
    elif scheduler_name == 'DDIM':
        from diffusers.schedulers import DDIMScheduler
        scheduler = DDIMScheduler.from_config(scheduler_config)
    elif scheduler_name == 'DDPM':
        from diffusers.schedulers import DDPMScheduler
        scheduler = DDPMScheduler.from_config(scheduler_config)
    else:
        raise ValueError(f"Unknown scheduler: {scheduler_name}")
    return scheduler