Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,089 Bytes
9892334 4074997 9892334 4074997 9892334 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput, logging
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.resnet import Downsample2D, ResnetBlock2D
from einops import rearrange
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class ControlNetOutput(BaseOutput):
"""
The output of [`ControlNetModel`].
Args:
down_block_res_samples (`tuple[torch.Tensor]`):
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
used to condition the original UNet's downsampling activations.
mid_down_block_re_sample (`torch.Tensor`):
The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
Output can be used to condition the original UNet's middle block activation.
"""
down_block_res_samples: Tuple[torch.Tensor]
mid_block_res_sample: torch.Tensor
class Block2D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
output_scale_factor: float = 1.0,
add_downsample: bool = True,
downsample_padding: int = 1,
):
super().__init__()
resnets = []
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
self.resnets = nn.ModuleList(resnets)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels,
use_conv=True,
out_channels=out_channels,
padding=downsample_padding,
name="op",
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
output_states = ()
for resnet in zip(self.resnets):
hidden_states = resnet(hidden_states, temb)
output_states += (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states += (hidden_states,)
return hidden_states, output_states
class IdentityModule(nn.Module):
def __init__(self):
super(IdentityModule, self).__init__()
def forward(self, *args):
if len(args) > 0:
return args[0]
else:
return None
class BasicBlock(nn.Module):
def __init__(self,
in_channels: int,
out_channels: Optional[int] = None,
stride=1,
conv_shortcut: bool = False,
dropout: float = 0.0,
temb_channels: int = 512,
groups: int = 32,
groups_out: Optional[int] = None,
pre_norm: bool = True,
eps: float = 1e-6,
non_linearity: str = "swish",
skip_time_act: bool = False,
time_embedding_norm: str = "default", # default, scale_shift, ada_group, spatial
kernel: Optional[torch.FloatTensor] = None,
output_scale_factor: float = 1.0,
use_in_shortcut: Optional[bool] = None,
up: bool = False,
down: bool = False,
conv_shortcut_bias: bool = True,
conv_2d_out_channels: Optional[int] = None,):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = None
if stride != 1 or in_channels != out_channels:
self.downsample = nn.Sequential(
nn.Conv2d(in_channels,
out_channels,
kernel_size=3 if stride != 1 else 1,
stride=stride,
padding=1 if stride != 1 else 0,
bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x, *args):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Block2D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
output_scale_factor: float = 1.0,
add_downsample: bool = True,
downsample_padding: int = 1,
):
super().__init__()
resnets = []
for i in range(num_layers):
# in_channels = in_channels if i == 0 else out_channels
resnets.append(
# ResnetBlock2D(
# in_channels=in_channels,
# out_channels=out_channels,
# temb_channels=temb_channels,
# eps=resnet_eps,
# groups=resnet_groups,
# dropout=dropout,
# time_embedding_norm=resnet_time_scale_shift,
# non_linearity=resnet_act_fn,
# output_scale_factor=output_scale_factor,
# pre_norm=resnet_pre_norm,
BasicBlock(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
) if i == num_layers - 1 else \
IdentityModule()
)
self.resnets = nn.ModuleList(resnets)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
# Downsample2D(
# out_channels,
# use_conv=True,
# out_channels=out_channels,
# padding=downsample_padding,
# name="op",
# )
BasicBlock(
in_channels=out_channels,
out_channels=out_channels,
temb_channels=temb_channels,
stride=2,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
output_states = ()
for resnet in self.resnets:
hidden_states = resnet(hidden_states, temb)
output_states += (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states += (hidden_states,)
return hidden_states, output_states
class ControlProject(nn.Module):
def __init__(self, num_channels, scale=8, is_empty=False) -> None:
super().__init__()
assert scale and scale & (scale - 1) == 0
self.is_empty = is_empty
self.scale = scale
if not is_empty:
if scale > 1:
self.down_scale = nn.AvgPool2d(scale, scale)
else:
self.down_scale = nn.Identity()
self.out = nn.Conv2d(num_channels, num_channels, kernel_size=1, stride=1, bias=False)
for p in self.out.parameters():
nn.init.zeros_(p)
def forward(
self,
hidden_states: torch.FloatTensor):
if self.is_empty:
shape = list(hidden_states.shape)
shape[-2] = shape[-2] // self.scale
shape[-1] = shape[-1] // self.scale
return torch.zeros(shape).to(hidden_states)
if len(hidden_states.shape) == 5:
B, F, C, H, W = hidden_states.shape
hidden_states = rearrange(hidden_states, "B F C H W -> (B F) C H W")
hidden_states = self.down_scale(hidden_states)
hidden_states = self.out(hidden_states)
hidden_states = rearrange(hidden_states, "(B F) C H W -> B F C H W", F=F)
else:
hidden_states = self.down_scale(hidden_states)
hidden_states = self.out(hidden_states)
return hidden_states
class ControlNetModel(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
in_channels: List[int] = [128, 128],
out_channels: List[int] = [128, 256],
groups: List[int] = [4, 8],
time_embed_dim: int = 256,
final_out_channels: int = 320,
):
super().__init__()
self.time_proj = Timesteps(128, True, downscale_freq_shift=0)
self.time_embedding = TimestepEmbedding(128, time_embed_dim)
self.embedding = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(2, 64),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.GroupNorm(2, 64),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.GroupNorm(2, 128),
nn.ReLU(),
)
self.down_res = nn.ModuleList()
self.down_sample = nn.ModuleList()
for i in range(len(in_channels)):
self.down_res.append(
ResnetBlock2D(
in_channels=in_channels[i],
out_channels=out_channels[i],
temb_channels=time_embed_dim,
groups=groups[i]
),
)
self.down_sample.append(
Downsample2D(
out_channels[i],
use_conv=True,
out_channels=out_channels[i],
padding=1,
name="op",
)
)
self.mid_convs = nn.ModuleList()
self.mid_convs.append(nn.Sequential(
nn.Conv2d(
in_channels=out_channels[-1],
out_channels=out_channels[-1],
kernel_size=3,
stride=1,
padding=1
),
nn.ReLU(),
nn.GroupNorm(8, out_channels[-1]),
nn.Conv2d(
in_channels=out_channels[-1],
out_channels=out_channels[-1],
kernel_size=3,
stride=1,
padding=1
),
nn.GroupNorm(8, out_channels[-1]),
))
self.mid_convs.append(
nn.Conv2d(
in_channels=out_channels[-1],
out_channels=final_out_channels,
kernel_size=1,
stride=1,
))
self.scale = 1.0 # nn.Parameter(torch.tensor(1.))
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
# Copied from diffusers.models.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
"""
Sets the attention processor to use [feed forward
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
Parameters:
chunk_size (`int`, *optional*):
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
over each tensor of dim=`dim`.
dim (`int`, *optional*, defaults to `0`):
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
or dim=1 (sequence length).
"""
if dim not in [0, 1]:
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
# By default chunk size is 1
chunk_size = chunk_size or 1
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
if hasattr(module, "set_chunk_feed_forward"):
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
for child in module.children():
fn_recursive_feed_forward(child, chunk_size, dim)
for module in self.children():
fn_recursive_feed_forward(module, chunk_size, dim)
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
) -> Union[ControlNetOutput, Tuple]:
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
batch_size = sample.shape[0]
timesteps = timesteps.expand(batch_size)
t_emb = self.time_proj(timesteps)
# `Timesteps` does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=sample.dtype)
emb_batch = self.time_embedding(t_emb)
# Repeat the embeddings num_video_frames times
# emb: [batch, channels] -> [batch * frames, channels]
emb = emb_batch
sample = self.embedding(sample)
for res, downsample in zip(self.down_res, self.down_sample):
sample = res(sample, emb)
sample = downsample(sample, emb)
sample = self.mid_convs[0](sample) + sample
sample = self.mid_convs[1](sample)
return {
'out': sample,
'scale': self.scale,
}
def zero_module(module):
for p in module.parameters():
nn.init.zeros_(p)
return module
|