Spaces:
Runtime error
Runtime error
inference fonctionnelle sans load de fichier
Browse files- src/inference.py +6 -8
src/inference.py
CHANGED
|
@@ -8,7 +8,7 @@ import torch
|
|
| 8 |
from src import dataloader
|
| 9 |
from src.model import Decoder, Encoder, EncoderDecoderModel
|
| 10 |
|
| 11 |
-
with open
|
| 12 |
words = pickle.load(vocab)
|
| 13 |
vectoriser = dataloader.Vectoriser(words)
|
| 14 |
|
|
@@ -27,12 +27,10 @@ def inferenceAPI(text: str) -> str:
|
|
| 27 |
text = text.split()
|
| 28 |
# On défini les paramètres d'entrée pour le modèle
|
| 29 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 30 |
-
encoder = Encoder(len(vectoriser.idx_to_token) + 1, 256, 512, 0.5, device)
|
| 31 |
-
|
| 32 |
-
)
|
| 33 |
-
decoder
|
| 34 |
-
device
|
| 35 |
-
)
|
| 36 |
|
| 37 |
# On instancie le modèle
|
| 38 |
model = EncoderDecoderModel(encoder, decoder, vectoriser, device)
|
|
@@ -49,7 +47,7 @@ def inferenceAPI(text: str) -> str:
|
|
| 49 |
with torch.no_grad():
|
| 50 |
output = model(source).to(device)
|
| 51 |
output.to(device)
|
| 52 |
-
output=output.argmax(dim=-1)
|
| 53 |
return vectoriser.decode(output)
|
| 54 |
|
| 55 |
|
|
|
|
| 8 |
from src import dataloader
|
| 9 |
from src.model import Decoder, Encoder, EncoderDecoderModel
|
| 10 |
|
| 11 |
+
with open("model/vocab.pkl", "rb") as vocab:
|
| 12 |
words = pickle.load(vocab)
|
| 13 |
vectoriser = dataloader.Vectoriser(words)
|
| 14 |
|
|
|
|
| 27 |
text = text.split()
|
| 28 |
# On défini les paramètres d'entrée pour le modèle
|
| 29 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 30 |
+
encoder = Encoder(len(vectoriser.idx_to_token) + 1, 256, 512, 0.5, device)
|
| 31 |
+
encoder.to(device)
|
| 32 |
+
decoder = Decoder(len(vectoriser.idx_to_token) + 1, 256, 512, 0.5, device)
|
| 33 |
+
decoder.to(device)
|
|
|
|
|
|
|
| 34 |
|
| 35 |
# On instancie le modèle
|
| 36 |
model = EncoderDecoderModel(encoder, decoder, vectoriser, device)
|
|
|
|
| 47 |
with torch.no_grad():
|
| 48 |
output = model(source).to(device)
|
| 49 |
output.to(device)
|
| 50 |
+
output = output.argmax(dim=-1)
|
| 51 |
return vectoriser.decode(output)
|
| 52 |
|
| 53 |
|