Spaces:
Runtime error
Runtime error
import json | |
import logging | |
import os | |
import shutil | |
import sys | |
import uuid | |
from json import JSONDecodeError | |
from pathlib import Path | |
from tqdm.auto import tqdm | |
import datetime | |
from time import sleep | |
import pandas as pd | |
import pinecone | |
import streamlit as st | |
from annotated_text import annotation | |
from haystack import Document | |
from haystack.document_stores import PineconeDocumentStore | |
from haystack.nodes import ( | |
DocxToTextConverter, | |
EmbeddingRetriever, | |
FARMReader, | |
FileTypeClassifier, | |
PDFToTextConverter, | |
PreProcessor, | |
TextConverter, | |
) | |
from haystack.pipelines import ExtractiveQAPipeline, Pipeline | |
from markdown import markdown | |
from sentence_transformers import SentenceTransformer | |
import openai | |
# get API key from top-right dropdown on OpenAI website | |
openai.api_key = st.secrets["OPENAI_API_KEY"] | |
index_name = "qa_demo" | |
# connect to pinecone environment | |
pinecone.init( | |
api_key=st.secrets["pinecone_apikey"], | |
environment="us-east1-gcp" | |
) | |
index_name = "qa-demo" | |
embed_model = "text-embedding-ada-002" | |
preprocessor = PreProcessor( | |
clean_empty_lines=True, | |
clean_whitespace=True, | |
clean_header_footer=False, | |
split_by="word", | |
split_length=100, | |
split_respect_sentence_boundary=True | |
) | |
file_type_classifier = FileTypeClassifier() | |
text_converter = TextConverter() | |
pdf_converter = PDFToTextConverter() | |
docx_converter = DocxToTextConverter() | |
# check if the abstractive-question-answering index exists | |
if index_name not in pinecone.list_indexes(): | |
# create the index if it does not exist | |
pinecone.create_index( | |
index_name, | |
dimension=1536, | |
metric="cosine" | |
) | |
# connect to abstractive-question-answering index we created | |
index = pinecone.Index(index_name) | |
FILE_UPLOAD_PATH= "./data/uploads/" | |
os.makedirs(FILE_UPLOAD_PATH, exist_ok=True) | |
limit = 3750 | |
def retrieve(query): | |
res = openai.Embedding.create( | |
input=[query], | |
engine=embed_model | |
) | |
# retrieve from Pinecone | |
xq = res['data'][0]['embedding'] | |
# get relevant contexts | |
res = index.query(xq, top_k=3, include_metadata=True) | |
contexts = [ | |
x['metadata']['text'] for x in res['matches'] | |
] | |
# build our prompt with the retrieved contexts included | |
prompt_start = ( | |
"Answer the question based on the context below.\n\n"+ | |
"Context:\n" | |
) | |
prompt_end = ( | |
f"\n\nQuestion: {query}\nAnswer:" | |
) | |
# append contexts until hitting limit | |
for i in range(1, len(contexts)): | |
if len("\n\n---\n\n".join(contexts[:i])) >= limit: | |
prompt = ( | |
prompt_start + | |
"\n\n---\n\n".join(contexts[:i-1]) + | |
prompt_end | |
) | |
break | |
elif i == len(contexts)-1: | |
prompt = ( | |
prompt_start + | |
"\n\n---\n\n".join(contexts) + | |
prompt_end | |
) | |
return prompt, contexts | |
# first let's make it simpler to get answers | |
def complete(prompt): | |
# query text-davinci-003 | |
res = openai.Completion.create( | |
engine='text-davinci-003', | |
prompt=prompt, | |
temperature=0, | |
max_tokens=400, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0, | |
stop=None | |
) | |
return res['choices'][0]['text'].strip() | |
def query(pipe, question, top_k_reader, top_k_retriever): | |
# first we retrieve relevant items from Pinecone | |
query_with_contexts, contexts = retrieve(question) | |
return complete(query_with_contexts), contexts | |
indexing_pipeline_with_classification = Pipeline() | |
indexing_pipeline_with_classification.add_node( | |
component=file_type_classifier, name="FileTypeClassifier", inputs=["File"] | |
) | |
indexing_pipeline_with_classification.add_node( | |
component=text_converter, name="TextConverter", inputs=["FileTypeClassifier.output_1"] | |
) | |
indexing_pipeline_with_classification.add_node( | |
component=pdf_converter, name="PdfConverter", inputs=["FileTypeClassifier.output_2"] | |
) | |
indexing_pipeline_with_classification.add_node( | |
component=docx_converter, name="DocxConverter", inputs=["FileTypeClassifier.output_4"] | |
) | |
indexing_pipeline_with_classification.add_node( | |
component=preprocessor, | |
name="Preprocessor", | |
inputs=["TextConverter", "PdfConverter", "DocxConverter"], | |
) | |
def set_state_if_absent(key, value): | |
if key not in st.session_state: | |
st.session_state[key] = value | |
# Adjust to a question that you would like users to see in the search bar when they load the UI: | |
DEFAULT_QUESTION_AT_STARTUP = os.getenv("DEFAULT_QUESTION_AT_STARTUP", "My blog post discusses remote work. Give me statistics.") | |
DEFAULT_ANSWER_AT_STARTUP = os.getenv("DEFAULT_ANSWER_AT_STARTUP", "7% more remote workers have been at their current organization for 5 years or fewer") | |
# Sliders | |
DEFAULT_DOCS_FROM_RETRIEVER = int(os.getenv("DEFAULT_DOCS_FROM_RETRIEVER", "3")) | |
DEFAULT_NUMBER_OF_ANSWERS = int(os.getenv("DEFAULT_NUMBER_OF_ANSWERS", "3")) | |
st.set_page_config(page_title="Haystack Demo", page_icon="https://haystack.deepset.ai/img/HaystackIcon.png") | |
# Persistent state | |
set_state_if_absent("question", DEFAULT_QUESTION_AT_STARTUP) | |
set_state_if_absent("answer", DEFAULT_ANSWER_AT_STARTUP) | |
set_state_if_absent("results", None) | |
# Small callback to reset the interface in case the text of the question changes | |
def reset_results(*args): | |
st.session_state.answer = None | |
st.session_state.results = None | |
st.session_state.raw_json = None | |
# Title | |
st.write("# GPT3 and Langchain Demo") | |
st.markdown( | |
""" | |
This demo takes its data from the documents uploaded to the Pinecone index through this app. \n | |
Ask any question from the uploaded documents and Pinecone will retrieve the context for answers and GPT3 will answer them using the retrieved context. \n | |
*Note: do not use keywords, but full-fledged questions.* The demo is not optimized to deal with keyword queries and might misunderstand you. | |
""", | |
unsafe_allow_html=True, | |
) | |
# Sidebar | |
st.sidebar.header("Options") | |
st.sidebar.write("## File Upload:") | |
data_files = st.sidebar.file_uploader( | |
"upload", type=["pdf", "txt", "docx"], accept_multiple_files=True, label_visibility="hidden" | |
) | |
ALL_FILES = [] | |
META_DATA = [] | |
for data_file in data_files: | |
# Upload file | |
if data_file: | |
file_path = Path(FILE_UPLOAD_PATH) / f"{uuid.uuid4().hex}_{data_file.name}" | |
with open(file_path, "wb") as f: | |
f.write(data_file.getbuffer()) | |
ALL_FILES.append(file_path) | |
st.sidebar.write(str(data_file.name) + " β ") | |
META_DATA.append({"filename":data_file.name}) | |
if len(ALL_FILES) > 0: | |
# document_store.update_embeddings(retriever, update_existing_embeddings=False) | |
docs = indexing_pipeline_with_classification.run(file_paths=ALL_FILES, meta=META_DATA)["documents"] | |
index_name = "qa_demo" | |
# we will use batches of 64 | |
batch_size = 64 | |
# docs = docs['documents'] | |
with st.spinner( | |
"π§ Performing indexing of uplaoded documents... \n " | |
): | |
for i in range(0, len(docs), batch_size): | |
# find end of batch | |
i_end = min(i+batch_size, len(docs)) | |
# extract batch | |
batch = [doc.content for doc in docs[i:i_end]] | |
# generate embeddings for batch | |
try: | |
res = openai.Embedding.create(input=texts, engine=embed_model) | |
except: | |
done = False | |
while not done: | |
sleep(5) | |
try: | |
res = openai.Embedding.create(input=texts, engine=embed_model) | |
done = True | |
except: | |
pass | |
embeds = [record['embedding'] for record in res['data']] | |
# get metadata | |
meta = [doc.meta for doc in docs[i:i_end]] | |
# create unique IDs | |
ids = [doc.id for doc in docs[i:i_end]] | |
# add all to upsert list | |
to_upsert = list(zip(ids, emb, meta)) | |
# upsert/insert these records to pinecone | |
_ = index.upsert(vectors=to_upsert) | |
# top_k_reader = st.sidebar.slider( | |
# "Max. number of answers", | |
# min_value=1, | |
# max_value=10, | |
# value=DEFAULT_NUMBER_OF_ANSWERS, | |
# step=1, | |
# on_change=reset_results, | |
# ) | |
# top_k_retriever = st.sidebar.slider( | |
# "Max. number of documents from retriever", | |
# min_value=1, | |
# max_value=10, | |
# value=DEFAULT_DOCS_FROM_RETRIEVER, | |
# step=1, | |
# on_change=reset_results, | |
# ) | |
# data_files = st.file_uploader( | |
# "upload", type=["csv"], accept_multiple_files=True, label_visibility="hidden" | |
# ) | |
# for data_file in data_files: | |
# # Upload file | |
# if data_file: | |
# raw_json = upload_doc(data_file) | |
question = st.text_input( | |
value=st.session_state.question, | |
max_chars=100, | |
on_change=reset_results, | |
label="question", | |
label_visibility="hidden", | |
) | |
col1, col2 = st.columns(2) | |
col1.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True) | |
col2.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True) | |
# Run button | |
run_pressed = col1.button("Run") | |
if run_pressed: | |
run_query = ( | |
run_pressed or question != st.session_state.question | |
) | |
# Get results for query | |
if run_query and question: | |
reset_results() | |
st.session_state.question = question | |
with st.spinner( | |
"π§ Performing neural search on documents... \n " | |
): | |
try: | |
st.session_state.results = query( | |
pipe, question, top_k_reader=None, top_k_retriever=None | |
) | |
except JSONDecodeError as je: | |
st.error("π An error occurred reading the results. Is the document store working?") | |
except Exception as e: | |
logging.exception(e) | |
if "The server is busy processing requests" in str(e) or "503" in str(e): | |
st.error("π§βπΎ All our workers are busy! Try again later.") | |
else: | |
st.error(f"π An error occurred during the request. {str(e)}") | |
if st.session_state.results: | |
st.write("## Results:") | |
for result,contexts in st.session_state.results: | |
# answer, context = result.answer, result.context | |
# start_idx = context.find(answer) | |
# end_idx = start_idx + len(answer) | |
# Hack due to this bug: https://github.com/streamlit/streamlit/issues/3190 | |
try: | |
# source = f"[{result.meta['Title']}]({result.meta['link']})" | |
# st.write( | |
# markdown(f'**Source:** {source} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '), | |
# unsafe_allow_html=True, | |
# ) | |
st.write( | |
markdown(f"Answer: {result} \n Extracted from context {contexts}"), | |
unsafe_allow_html=True, | |
) | |
except: | |
# filename = result.meta.get('filename', "") | |
# st.write( | |
# markdown(f'From file: {filename} \n {context[:start_idx] } {str(annotation(answer, "ANSWER", "#8ef"))} {context[end_idx:]} \n '), | |
# unsafe_allow_html=True, | |
# ) | |
st.write( | |
markdown(f"Answer: {result}"), | |
unsafe_allow_html=True, | |
) | |