Spaces:
Runtime error
Runtime error
Commit
·
26add68
1
Parent(s):
90b5d0f
Update app.py
Browse files
app.py
CHANGED
@@ -48,7 +48,7 @@ preprocessor = PreProcessor(
|
|
48 |
clean_whitespace=True,
|
49 |
clean_header_footer=False,
|
50 |
split_by="word",
|
51 |
-
split_length=
|
52 |
split_respect_sentence_boundary=True
|
53 |
)
|
54 |
file_type_classifier = FileTypeClassifier()
|
@@ -129,7 +129,7 @@ def complete(prompt):
|
|
129 |
)
|
130 |
return res['choices'][0]['text'].strip()
|
131 |
|
132 |
-
def query(
|
133 |
# first we retrieve relevant items from Pinecone
|
134 |
query_with_contexts, contexts = retrieve(question)
|
135 |
return complete(query_with_contexts), contexts
|
@@ -216,7 +216,7 @@ if len(ALL_FILES) > 0:
|
|
216 |
docs = indexing_pipeline_with_classification.run(file_paths=ALL_FILES, meta=META_DATA)["documents"]
|
217 |
index_name = "qa_demo"
|
218 |
# we will use batches of 64
|
219 |
-
batch_size =
|
220 |
# docs = docs['documents']
|
221 |
with st.spinner(
|
222 |
"🧠 Performing indexing of uplaoded documents... \n "
|
@@ -228,13 +228,13 @@ if len(ALL_FILES) > 0:
|
|
228 |
batch = [doc.content for doc in docs[i:i_end]]
|
229 |
# generate embeddings for batch
|
230 |
try:
|
231 |
-
res = openai.Embedding.create(input=
|
232 |
except:
|
233 |
done = False
|
234 |
while not done:
|
235 |
sleep(5)
|
236 |
try:
|
237 |
-
res = openai.Embedding.create(input=
|
238 |
done = True
|
239 |
except:
|
240 |
pass
|
@@ -300,7 +300,7 @@ if run_pressed:
|
|
300 |
):
|
301 |
try:
|
302 |
st.session_state.results = query(
|
303 |
-
|
304 |
)
|
305 |
except JSONDecodeError as je:
|
306 |
st.error("👓 An error occurred reading the results. Is the document store working?")
|
|
|
48 |
clean_whitespace=True,
|
49 |
clean_header_footer=False,
|
50 |
split_by="word",
|
51 |
+
split_length=200,
|
52 |
split_respect_sentence_boundary=True
|
53 |
)
|
54 |
file_type_classifier = FileTypeClassifier()
|
|
|
129 |
)
|
130 |
return res['choices'][0]['text'].strip()
|
131 |
|
132 |
+
def query(question, top_k_reader, top_k_retriever):
|
133 |
# first we retrieve relevant items from Pinecone
|
134 |
query_with_contexts, contexts = retrieve(question)
|
135 |
return complete(query_with_contexts), contexts
|
|
|
216 |
docs = indexing_pipeline_with_classification.run(file_paths=ALL_FILES, meta=META_DATA)["documents"]
|
217 |
index_name = "qa_demo"
|
218 |
# we will use batches of 64
|
219 |
+
batch_size = 200
|
220 |
# docs = docs['documents']
|
221 |
with st.spinner(
|
222 |
"🧠 Performing indexing of uplaoded documents... \n "
|
|
|
228 |
batch = [doc.content for doc in docs[i:i_end]]
|
229 |
# generate embeddings for batch
|
230 |
try:
|
231 |
+
res = openai.Embedding.create(input=batch, engine=embed_model)
|
232 |
except:
|
233 |
done = False
|
234 |
while not done:
|
235 |
sleep(5)
|
236 |
try:
|
237 |
+
res = openai.Embedding.create(input=batch, engine=embed_model)
|
238 |
done = True
|
239 |
except:
|
240 |
pass
|
|
|
300 |
):
|
301 |
try:
|
302 |
st.session_state.results = query(
|
303 |
+
question, top_k_reader=None, top_k_retriever=None
|
304 |
)
|
305 |
except JSONDecodeError as je:
|
306 |
st.error("👓 An error occurred reading the results. Is the document store working?")
|