File size: 2,133 Bytes
5f011f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
import requests
import numpy as np
import pandas as pd
import gradio as gr
from io import BytesIO
from PIL import Image as PILIMAGE
from transformers import CLIPProcessor, CLIPModel, CLIPTokenizer

#Selecting device based on availability of GPUs
device = "cuda" if torch.cuda.is_available() else "cpu"
    
#Defining model, processor and tokenizer
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")

    
#Loading the data
photos = pd.read_csv("./items_data.csv")
photo_features = np.load("./features.npy")
photo_ids = pd.read_csv("./photo_ids.csv")
photo_ids = list(photo_ids['Uniq Id'])
    
def find_best_matches(text):
    
    #Inference
    with torch.no_grad():
        # Encode and normalize the description using CLIP
        inputs = tokenizer([text],  padding=True, return_tensors="pt")
        inputs = processor(text=[text], images=None, return_tensors="pt", padding=True)
    text_encoded =  model.get_text_features(**inputs).detach().numpy()
  
    
    # Finding Cosine similarity
    similarities = list((text_encoded @ photo_features.T).squeeze(0))
    
    #Block of code for displaying top 3 best matches (images)
    matched_images = []
    for i in range(3):
      idx = sorted(zip(similarities, range(photo_features.shape[0])), key=lambda x: x[0], reverse=True)[i][1]
      photo_id = photo_ids[idx]
      photo_data = photos[photos["photo_id"] == photo_id].iloc[0]
      response = requests.get(photo_data["photo_image_url"] + "?w=640")
      img = PILIMAGE.open(BytesIO(response.content))
      matched_images.append(img)
    return matched_images
    
    
#Gradio app     
iface = gr.Interface(fn=find_best_matches, inputs=[gr.inputs.Textbox(lines=1, label="Text query", placeholder="Introduce the search text...",)],
            theme = "dark",
            outputs=gr.outputs.Carousel([gr.outputs.Image(type="pil"), gr.outputs.Image(type="pil"), gr.outputs.Image(type="pil")]),
            enable_queue=True).launch()