|
import torch |
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline |
|
import gradio as gr |
|
import librosa |
|
|
|
MODEL_NAME = "EwoutLagendijk/whisper-small-indonesian" |
|
BATCH_SIZE = 8 |
|
|
|
device = 0 if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
model_name = "EwoutLagendijk/whisper-small-indonesian" |
|
|
|
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name) |
|
processor = AutoProcessor.from_pretrained(model_name) |
|
|
|
|
|
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="id", task="transcribe") |
|
|
|
|
|
translation_pipeline = pipeline("translation", model="Helsinki-NLP/opus-mt-id-en") |
|
|
|
def transcribe_speech(filepath): |
|
|
|
audio, sampling_rate = librosa.load(filepath, sr=16000) |
|
|
|
|
|
chunk_duration = 5 |
|
chunk_samples = chunk_duration * sampling_rate |
|
|
|
|
|
transcription = [] |
|
for i in range(0, len(audio), chunk_samples): |
|
chunk = audio[i:i + chunk_samples] |
|
|
|
|
|
inputs = processor(audio=chunk, sampling_rate=16000, return_tensors="pt").input_features |
|
|
|
|
|
generated_ids = model.generate( |
|
inputs, |
|
max_new_tokens=444, |
|
forced_decoder_ids=processor.get_decoder_prompt_ids(language="id", task="transcribe") |
|
) |
|
|
|
|
|
chunk_transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
|
|
chunk_translation = translation_pipeline(chunk_transcription)[0]['translation_text'] |
|
|
|
|
|
transcription.append(f"Chunk {i//chunk_samples + 1}:\n") |
|
transcription.append(f"Transcription: {chunk_transcription}\n") |
|
transcription.append(f"Translation: {chunk_translation}\n\n") |
|
|
|
|
|
return "\n".join(transcription) |
|
|
|
demo = gr.Blocks() |
|
|
|
mic_transcribe = gr.Interface( |
|
fn=transcribe_speech_with_timestamps, |
|
inputs=gr.Audio(sources="microphone", type="filepath"), |
|
outputs=gr.Textbox(lines=10, label="Transcription with Timestamps"), |
|
) |
|
|
|
file_transcribe = gr.Interface( |
|
fn=transcribe_speech_with_timestamps, |
|
inputs=gr.Audio(sources="upload", type="filepath"), |
|
outputs=gr.Textbox(lines=10, label="Transcription with Timestamps"), |
|
) |
|
|
|
with demo: |
|
gr.TabbedInterface([mic_transcribe, file_transcribe], ["Transcribe and translate Microphone", "Transcribe and translate Audio File"]) |
|
|
|
demo.launch(debug=True) |
|
|