|
import torch |
|
from transformers import pipeline |
|
from transformers.pipelines.audio_utils import ffmpeg_read |
|
import gradio as gr |
|
|
|
MODEL_NAME = "EwoutLagendijk/whisper-small-indonesian" |
|
BATCH_SIZE = 8 |
|
|
|
device = 0 if torch.cuda.is_available() else "cpu" |
|
|
|
pipe = pipeline( |
|
task="automatic-speech-recognition", |
|
model=MODEL_NAME, |
|
chunk_length_s=30, |
|
device=device, |
|
) |
|
|
|
|
|
|
|
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."): |
|
if seconds is not None: |
|
milliseconds = round(seconds * 1000.0) |
|
|
|
hours = milliseconds // 3_600_000 |
|
milliseconds -= hours * 3_600_000 |
|
|
|
minutes = milliseconds // 60_000 |
|
milliseconds -= minutes * 60_000 |
|
|
|
seconds = milliseconds // 1_000 |
|
milliseconds -= seconds * 1_000 |
|
|
|
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" |
|
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" |
|
else: |
|
|
|
return seconds |
|
|
|
|
|
def transcribe_speech(filepath): |
|
|
|
audio, sampling_rate = librosa.load(filepath, sr=16000) |
|
|
|
|
|
chunk_duration = 30 |
|
chunk_samples = chunk_duration * sampling_rate |
|
|
|
|
|
transcription = [] |
|
for i in range(0, len(audio), chunk_samples): |
|
chunk = audio[i:i + chunk_samples] |
|
|
|
|
|
inputs = processor(audio=chunk, sampling_rate=16000, return_tensors="pt").input_features |
|
|
|
|
|
generated_ids = model.generate( |
|
inputs, |
|
max_new_tokens=444, |
|
forced_decoder_ids=processor.get_decoder_prompt_ids(language="id", task="transcribe") |
|
) |
|
|
|
|
|
chunk_transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
transcription.append(chunk_transcription) |
|
|
|
|
|
return " ".join(transcription) |
|
|
|
|
|
|
|
demo = gr.Blocks() |
|
|
|
mic_transcribe = gr.Interface( |
|
fn=transcribe_speech, |
|
inputs=gr.Audio(sources="microphone", type="filepath"), |
|
outputs=gr.components.Textbox(), |
|
) |
|
|
|
file_transcribe = gr.Interface( |
|
fn=transcribe_speech, |
|
inputs=gr.Audio(sources="upload", type="filepath"), |
|
outputs=gr.components.Textbox(), |
|
) |
|
|
|
with demo: |
|
gr.TabbedInterface([mic_transcribe, file_transcribe], ["Transcribe Microphone", "Transcribe Audio File"]) |
|
|
|
demo.launch(enable_queue=True) |