|
import os |
|
import torch |
|
from accelerate import Accelerator |
|
from PIL import Image |
|
import random |
|
import requests |
|
import streamlit as st |
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
from langchain_huggingface import HuggingFaceEndpoint |
|
from langchain_core.prompts import PromptTemplate |
|
from langchain_core.output_parsers import StrOutputParser |
|
|
|
|
|
llm_model_id = "mistralai/Mistral-7B-Instruct-v0.3" |
|
blip_model_id = "Salesforce/blip-image-captioning-large" |
|
|
|
|
|
processor = BlipProcessor.from_pretrained(blip_model_id) |
|
model = BlipForConditionalGeneration.from_pretrained(blip_model_id) |
|
|
|
|
|
accelerator = Accelerator() |
|
|
|
def get_llm_hf_inference(model_id=llm_model_id, max_new_tokens=128, temperature=0.1): |
|
try: |
|
llm = HuggingFaceEndpoint( |
|
repo_id=model_id, |
|
max_new_tokens=max_new_tokens, |
|
temperature=temperature, |
|
token=os.getenv("HF_TOKEN") |
|
) |
|
except Exception as e: |
|
st.error(f"Error loading model: {e}") |
|
llm = None |
|
return llm |
|
|
|
def generate_caption(image, min_len=30, max_len=100): |
|
try: |
|
inputs = processor(image, return_tensors="pt") |
|
out = model.generate(**inputs, min_length=min_len, max_length=max_len) |
|
caption = processor.decode(out[0], skip_special_tokens=True) |
|
return caption |
|
except Exception as e: |
|
st.error(f"Error generating caption: {e}") |
|
return 'Unable to generate caption.' |
|
|
|
|
|
st.set_page_config(page_title="HuggingFace ChatBot", page_icon="π€") |
|
st.title("Personal HuggingFace ChatBot") |
|
st.markdown(f"*This is a simple chatbot using the HuggingFace transformers library with {llm_model_id}.*") |
|
|
|
|
|
if "avatars" not in st.session_state: |
|
st.session_state.avatars = {'user': None, 'assistant': None} |
|
|
|
if 'user_text' not in st.session_state: |
|
st.session_state.user_text = None |
|
|
|
if "max_response_length" not in st.session_state: |
|
st.session_state.max_response_length = 256 |
|
|
|
if "system_message" not in st.session_state: |
|
st.session_state.system_message = "friendly AI conversing with a human user" |
|
|
|
if "starter_message" not in st.session_state: |
|
st.session_state.starter_message = "Hello, there! How can I help you today?" |
|
|
|
if "uploaded_image_path" not in st.session_state: |
|
st.session_state.uploaded_image_path = None |
|
|
|
|
|
with st.sidebar: |
|
st.header("System Settings") |
|
st.session_state.system_message = st.text_area( |
|
"System Message", value="You are a friendly AI conversing with a human user." |
|
) |
|
st.session_state.starter_message = st.text_area( |
|
'First AI Message', value="Hello, there! How can I help you today?" |
|
) |
|
st.session_state.max_response_length = st.number_input( |
|
"Max Response Length", value=128 |
|
) |
|
st.markdown("*Select Avatars:*") |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.session_state.avatars['assistant'] = st.selectbox( |
|
"AI Avatar", options=["π€", "π¬", "π€"], index=0 |
|
) |
|
with col2: |
|
st.session_state.avatars['user'] = st.selectbox( |
|
"User Avatar", options=["π€", "π±ββοΈ", "π¨πΎ", "π©", "π§πΎ"], index=0 |
|
) |
|
reset_history = st.button("Reset Chat History") |
|
|
|
|
|
if "chat_history" not in st.session_state or reset_history: |
|
st.session_state.chat_history = [{"role": "assistant", "content": st.session_state.starter_message}] |
|
|
|
def get_response(system_message, chat_history, user_text, max_new_tokens=256): |
|
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1) |
|
if hf is None: |
|
return "Error with model inference.", chat_history |
|
|
|
prompt = PromptTemplate.from_template( |
|
"[INST] {system_message}\nCurrent Conversation:\n{chat_history}\n\nUser: {user_text}.\n [/INST]\nAI:" |
|
) |
|
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content') |
|
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history)) |
|
response = response.split("AI:")[-1] |
|
|
|
chat_history.append({'role': 'user', 'content': user_text}) |
|
chat_history.append({'role': 'assistant', 'content': response}) |
|
return response, chat_history |
|
|
|
|
|
chat_interface = st.container() |
|
with chat_interface: |
|
output_container = st.container() |
|
|
|
|
|
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) |
|
if uploaded_image and st.session_state.uploaded_image_path is None: |
|
|
|
with st.spinner("Processing image... 0%"): |
|
image = Image.open(uploaded_image).convert("RGB") |
|
|
|
|
|
if not os.path.exists("session_images"): |
|
os.makedirs("session_images") |
|
|
|
|
|
image_path = os.path.join("session_images", uploaded_image.name) |
|
image.save(image_path) |
|
|
|
|
|
caption = generate_caption(image) |
|
st.session_state.chat_history.append({'role': 'user', 'content': f'![uploaded image]({image_path})'}) |
|
st.session_state.chat_history.append({'role': 'assistant', 'content': caption}) |
|
st.spinner("Processing image... 100%") |
|
|
|
st.session_state.user_text = st.chat_input(placeholder="Enter your text here.") |
|
|
|
if st.session_state.user_text: |
|
with st.chat_message("user", avatar=st.session_state.avatars['user']): |
|
st.markdown(st.session_state.user_text) |
|
with st.chat_message("assistant", avatar=st.session_state.avatars['assistant']): |
|
response, st.session_state.chat_history = get_response( |
|
system_message=st.session_state.system_message, |
|
chat_history=st.session_state.chat_history, |
|
user_text=st.session_state.user_text, |
|
max_new_tokens=st.session_state.max_response_length |
|
) |
|
st.markdown(response) |
|
st.spinner("Thinking... 100%") |
|
|