Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,55 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
from PIL import Image
|
4 |
import requests
|
5 |
from io import BytesIO
|
6 |
|
7 |
-
# Load
|
8 |
-
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
13 |
if isinstance(input_image, str):
|
14 |
response = requests.get(input_image)
|
15 |
img = Image.open(BytesIO(response.content))
|
16 |
else:
|
17 |
img = Image.fromarray(input_image)
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
#
|
23 |
-
|
24 |
|
25 |
-
# Return
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
outputs=gr.outputs.Image(type="pil", label="Detected Image"),
|
34 |
-
title="YOLOv5 Object Detection",
|
35 |
-
description="Upload an image and detect objects using YOLOv5 model. The model can identify objects like people, cars, animals, and more.",
|
36 |
-
theme="huggingface"
|
37 |
-
)
|
38 |
|
39 |
# Launch the interface
|
40 |
-
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPProcessor, CLIPModel
|
4 |
from PIL import Image
|
5 |
import requests
|
6 |
from io import BytesIO
|
7 |
|
8 |
+
# Load CLIP model for image classification
|
9 |
+
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
10 |
+
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
11 |
|
12 |
+
# Load Mistral-7B-Instruct-v0.3 model for chat
|
13 |
+
mistral_model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
|
14 |
+
mistral_tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
|
15 |
+
|
16 |
+
# Function for image classification with CLIP (anime recognition)
|
17 |
+
def classify_image(input_image):
|
18 |
if isinstance(input_image, str):
|
19 |
response = requests.get(input_image)
|
20 |
img = Image.open(BytesIO(response.content))
|
21 |
else:
|
22 |
img = Image.fromarray(input_image)
|
23 |
|
24 |
+
# Prepare the image and text (anime-related labels)
|
25 |
+
inputs = clip_processor(text=["anime", "cartoon", "realistic", "painting"], images=img, return_tensors="pt", padding=True)
|
26 |
+
outputs = clip_model(**inputs)
|
27 |
+
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
28 |
+
probs = logits_per_image.softmax(dim=1) # we can apply softmax to get the label probabilities
|
29 |
|
30 |
+
# Return the predicted class label
|
31 |
+
labels = ["anime", "cartoon", "realistic", "painting"]
|
32 |
+
predicted_label = labels[probs.argmax()]
|
33 |
+
return predicted_label
|
34 |
+
|
35 |
+
# Function for chat with Mistral 7B Instruct
|
36 |
+
def chat_with_mistral(input_text):
|
37 |
+
inputs = mistral_tokenizer(input_text, return_tensors="pt")
|
38 |
+
outputs = mistral_model.generate(inputs["input_ids"], max_length=150)
|
39 |
+
response = mistral_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
40 |
+
return response
|
41 |
+
|
42 |
+
# Create Gradio interface for both Image Classification and Chat
|
43 |
+
with gr.Blocks() as demo:
|
44 |
+
with gr.Tab("Chat with Mistral"):
|
45 |
+
chat_input = gr.Textbox(label="Ask Mistral 7B", placeholder="Type your question here...")
|
46 |
+
chat_output = gr.Textbox(label="Mistral's Reply", interactive=False)
|
47 |
+
chat_input.submit(chat_with_mistral, inputs=chat_input, outputs=chat_output)
|
48 |
|
49 |
+
with gr.Tab("Classify Anime Image"):
|
50 |
+
img_input = gr.Image(type="numpy", label="Upload Image for Anime Classification")
|
51 |
+
img_output = gr.Textbox(label="Predicted Label", interactive=False)
|
52 |
+
img_input.change(classify_image, inputs=img_input, outputs=img_output)
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
# Launch the interface
|
55 |
+
demo.launch()
|