Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,33 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
)
|
60 |
|
61 |
-
|
62 |
if __name__ == "__main__":
|
63 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
3 |
+
|
4 |
+
# Load model and tokenizer
|
5 |
+
model_name = "gpt2"
|
6 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
7 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
8 |
+
|
9 |
+
# Function to filter explicit content
|
10 |
+
def filter_explicit(content, filter_on):
|
11 |
+
explicit_keywords = ["badword1", "badword2"] # Add explicit words to filter
|
12 |
+
if filter_on:
|
13 |
+
for word in explicit_keywords:
|
14 |
+
content = content.replace(word, "[CENSORED]")
|
15 |
+
return content
|
16 |
+
|
17 |
+
def generate_response(prompt, explicit_filter):
|
18 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
19 |
+
outputs = model.generate(inputs, max_length=100, num_return_sequences=1)
|
20 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
21 |
+
filtered_response = filter_explicit(response, explicit_filter)
|
22 |
+
return filtered_response
|
23 |
+
|
24 |
+
# Define Gradio interface
|
25 |
+
iface = gr.Interface(
|
26 |
+
fn=generate_response,
|
27 |
+
inputs=[gr.inputs.Textbox(lines=2, placeholder="Type your message here..."), gr.inputs.Checkbox(label="Enable Explicit Content Filter")],
|
28 |
+
outputs="text",
|
29 |
+
title="Chatbot with Explicit Content Filter"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
)
|
31 |
|
|
|
32 |
if __name__ == "__main__":
|
33 |
+
iface.launch()
|