search_demo / src /pytorch_modules /datasets /schema_string_dataset.py
bibliotecadebabel
first commit
37c2a8d
raw
history blame
1.22 kB
import torch
from torch.utils.data import Dataset
import numpy as np
class SchemaStringDataset(Dataset):
def __init__(self, data, config):
self.data = data
self.config = config
def __len__(self):
# Return the dataset size specified in the configuration
return self.config["dataset_size"]
def transform_entry(self, entry):
# Filter out None and NaN values
filtered_entry = {k: v for k, v in entry.items() if v is not np.nan and v is not None}
# Check if there are any entries after filtering
if not filtered_entry:
return '', '' # Return empty strings if no valid entries exist
# Use the rest of the entry as input
inputs = [f"{k}:{v}" for k, v in filtered_entry.items()]
return ' '.join(inputs)
def __getitem__(self, idx):
transformed_data = {
'inputs': []
}
item = self.data[idx]
input_data = {k: v for k, v in item.items()}
inputs = self.transform_entry(input_data)
transformed_data['inputs'] = inputs
transformed_data['idx'] = idx
# Return the transformed item for the current idx
return transformed_data