File size: 42,265 Bytes
ee87a3a
d29ec53
ee87a3a
 
 
 
f2e1e32
ee87a3a
 
 
f950d25
ee87a3a
 
 
 
 
 
 
 
 
 
cf1091a
 
 
5ac1132
cf1091a
 
 
 
 
 
ee87a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f950d25
 
 
 
 
 
 
 
 
 
 
 
 
05b6ef0
ee87a3a
 
 
f950d25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee87a3a
 
5ac1132
 
 
 
ee87a3a
d29ec53
cf1091a
ee87a3a
 
d29ec53
 
5ac1132
ee87a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9eedbd
ee87a3a
 
 
 
 
d29ec53
ee87a3a
 
 
 
 
 
 
 
 
 
 
 
d29ec53
ee87a3a
 
 
 
 
 
 
 
 
 
d29ec53
 
 
 
b9eedbd
d29ec53
ee87a3a
 
d29ec53
 
 
ee87a3a
c5a524a
 
ee87a3a
 
f950d25
ee87a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d29ec53
ee87a3a
 
 
c5a524a
 
ee87a3a
 
 
f950d25
 
 
 
 
 
 
ee87a3a
c5a524a
 
 
 
 
ee87a3a
f2e1e32
 
b9eedbd
f2e1e32
b9eedbd
f2e1e32
 
 
 
f950d25
cf1091a
b9eedbd
f950d25
 
 
 
 
 
 
d29ec53
 
 
 
 
f950d25
d29ec53
 
f950d25
 
 
 
 
 
 
 
d29ec53
b9eedbd
 
 
 
d29ec53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9eedbd
d29ec53
 
 
 
 
 
 
 
f950d25
f2e1e32
 
 
 
f950d25
 
 
b9eedbd
 
 
d29ec53
 
 
 
f950d25
cf1091a
d29ec53
abf795d
cf1091a
 
 
abf795d
f950d25
cf1091a
 
 
abf795d
cf1091a
 
 
abf795d
f950d25
f2e1e32
d29ec53
 
 
 
 
 
 
 
 
f2e1e32
d29ec53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2e1e32
 
ee87a3a
2a1fba2
ee87a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2e1e32
ee87a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abf795d
ee87a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abf795d
 
ee87a3a
d29ec53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee87a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e57ef3
ee87a3a
7e57ef3
ee87a3a
 
5cd1774
 
 
ee87a3a
 
 
5cd1774
ee87a3a
 
 
 
 
 
f950d25
ee87a3a
 
 
 
 
 
 
f2e1e32
d29ec53
ee87a3a
f950d25
 
 
 
b9eedbd
d29ec53
5ac1132
ee87a3a
 
 
 
 
 
 
abf795d
d29ec53
abf795d
 
d29ec53
abf795d
d29ec53
ee87a3a
 
d29ec53
 
 
 
 
 
ee87a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2e1e32
ee87a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf1091a
ee87a3a
 
 
 
 
d29ec53
ee87a3a
 
 
 
 
cf1091a
ee87a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
abf795d
 
 
 
 
 
 
ee87a3a
 
 
 
 
 
 
 
abf795d
 
cf1091a
 
 
 
 
 
 
 
 
5ac1132
cf1091a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee87a3a
cf1091a
05b6ef0
ee87a3a
5ac1132
05b6ef0
ee87a3a
 
5ac1132
ee87a3a
 
 
cf1091a
ee87a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abf795d
 
ee87a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abf795d
d29ec53
ee87a3a
 
d29ec53
 
 
 
 
 
 
 
 
 
ee87a3a
 
 
 
 
 
d29ec53
 
 
 
ee87a3a
f2e1e32
abf795d
 
 
 
 
 
 
5ac1132
abf795d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2e1e32
 
 
 
f950d25
 
f2e1e32
b9eedbd
f2e1e32
 
 
f950d25
f2e1e32
cf1091a
 
 
 
b9eedbd
cf1091a
 
 
 
 
 
 
 
f2e1e32
 
ee87a3a
 
 
 
 
 
 
 
 
 
 
abf795d
5ac1132
cf1091a
 
ee87a3a
 
 
 
 
 
5ac1132
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
import os
import base64
import json
import gradio as gr
import numpy as np
from gradio import processing_utils
import requests
from packaging import version
from PIL import Image, ImageDraw
import functools
from langchain.llms.openai import OpenAI
from caption_anything.model import CaptionAnything
from caption_anything.utils.image_editing_utils import create_bubble_frame
from caption_anything.utils.utils import mask_painter, seg_model_map, prepare_segmenter, image_resize
from caption_anything.utils.parser import parse_augment
from caption_anything.captioner import build_captioner
from caption_anything.text_refiner import build_text_refiner
from caption_anything.segmenter import build_segmenter
from caption_anything.utils.chatbot import ConversationBot, build_chatbot_tools, get_new_image_name
from segment_anything import sam_model_registry
import easyocr
import tts 


gpt_state = 0

article = """
<div style='margin:20px auto;'>
<p>By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml</p>
</div>
"""

args = parse_augment()
args.segmenter = "huge"
args.segmenter_checkpoint = "sam_vit_h_4b8939.pth"
args.clip_filter = True
if args.segmenter_checkpoint is None:
    _, segmenter_checkpoint = prepare_segmenter(args.segmenter)
else:
    segmenter_checkpoint = args.segmenter_checkpoint
    
shared_captioner = build_captioner(args.captioner, args.device, args)
shared_sam_model = sam_model_registry[seg_model_map[args.segmenter]](checkpoint=segmenter_checkpoint).to(args.device)
ocr_lang = ["ch_tra", "en"]
shared_ocr_reader = easyocr.Reader(ocr_lang)
tools_dict = {e.split('_')[0].strip(): e.split('_')[1].strip() for e in args.chat_tools_dict.split(',')}
shared_chatbot_tools = build_chatbot_tools(tools_dict)


class ImageSketcher(gr.Image):
    """
    Fix the bug of gradio.Image that cannot upload with tool == 'sketch'.
    """

    is_template = True  # Magic to make this work with gradio.Block, don't remove unless you know what you're doing.

    def __init__(self, **kwargs):
        super().__init__(tool="sketch", **kwargs)

    def preprocess(self, x):
        if self.tool == 'sketch' and self.source in ["upload", "webcam"]:
            assert isinstance(x, dict)
            if x['mask'] is None:
                decode_image = processing_utils.decode_base64_to_image(x['image'])
                width, height = decode_image.size
                mask = np.zeros((height, width, 4), dtype=np.uint8)
                mask[..., -1] = 255
                mask = self.postprocess(mask)
                x['mask'] = mask
        return super().preprocess(x)


def build_caption_anything_with_models(args, api_key="", captioner=None, sam_model=None, ocr_reader=None, text_refiner=None,
                                       session_id=None):
    segmenter = build_segmenter(args.segmenter, args.device, args, model=sam_model)
    captioner = captioner
    if session_id is not None:
        print('Init caption anything for session {}'.format(session_id))
    return CaptionAnything(args, api_key, captioner=captioner, segmenter=segmenter, ocr_reader=ocr_reader, text_refiner=text_refiner)


def validate_api_key(api_key):
    api_key = str(api_key).strip()
    print(api_key)
    try:
        test_llm = OpenAI(model_name="gpt-3.5-turbo", temperature=0, openai_api_key=api_key)
        response = test_llm("Test API call")
        print(response)
        return True
    except Exception as e:
        print(f"API key validation failed: {e}")
        return False


def init_openai_api_key(api_key=""):
    text_refiner = None
    visual_chatgpt = None
    if api_key and len(api_key) > 30:
        print(api_key)
        if validate_api_key(api_key):
            try:
                text_refiner = build_text_refiner(args.text_refiner, args.device, args, api_key)
                assert len(text_refiner.llm('hi')) > 0 # test
                visual_chatgpt = ConversationBot(shared_chatbot_tools, api_key)
            except Exception as e:
                print(f"Error initializing TextRefiner or ConversationBot: {e}")
                text_refiner = None
                visual_chatgpt = None
        else:
            print("Invalid API key.")
    else:
        print("API key is too short.")
    print(text_refiner)
    openai_available = text_refiner is not None
    if openai_available:

        global gpt_state
        gpt_state=1
        return [gr.update(visible=True)]+[gr.update(visible=False)]+[gr.update(visible=True)]*3+[gr.update(visible=False)]+ [gr.update(visible=True)]+ [gr.update(visible=False)]*2 + [text_refiner, visual_chatgpt, None]
    else:
        gpt_state=0
        return [gr.update(visible=False)]*7 + [gr.update(visible=True)]*2 + [text_refiner, visual_chatgpt, 'Your OpenAI API Key is not available']
        
def init_wo_openai_api_key():
        global gpt_state
        gpt_state=0
        return  [gr.update(visible=False)]*4 + [gr.update(visible=True)]+ [gr.update(visible=False)]+[gr.update(visible=True)]+[gr.update(visible=False)]*2 + [None, None, None]

def get_click_prompt(chat_input, click_state, click_mode):
    inputs = json.loads(chat_input)
    if click_mode == 'Continuous':
        points = click_state[0]
        labels = click_state[1]
        for input in inputs:
            points.append(input[:2])
            labels.append(input[2])
    elif click_mode == 'Single':
        points = []
        labels = []
        for input in inputs:
            points.append(input[:2])
            labels.append(input[2])
        click_state[0] = points
        click_state[1] = labels
    else:
        raise NotImplementedError

    prompt = {
        "prompt_type": ["click"],
        "input_point": click_state[0],
        "input_label": click_state[1],
        "multimask_output": "True",
    }
    return prompt


def update_click_state(click_state, caption, click_mode):
    if click_mode == 'Continuous':
        click_state[2].append(caption)
    elif click_mode == 'Single':
        click_state[2] = [caption]
    else:
        raise NotImplementedError

def chat_input_callback(*args):
    visual_chatgpt, chat_input, click_state, state, aux_state = args
    if visual_chatgpt is not None:
        return visual_chatgpt.run_text(chat_input, state, aux_state)
    else:
        response = "Text refiner is not initilzed, please input openai api key."
        state = state + [(chat_input, response)]
        return state, state


        
def upload_callback(image_input, state, visual_chatgpt=None, openai_api_key=None,language="English"):
    if isinstance(image_input, dict):  # if upload from sketcher_input, input contains image and mask
        image_input, mask = image_input['image'], image_input['mask']

    click_state = [[], [], []]
    image_input = image_resize(image_input, res=1024)

    model = build_caption_anything_with_models(
        args,
        api_key="",
        captioner=shared_captioner,
        sam_model=shared_sam_model,
        ocr_reader=shared_ocr_reader,
        session_id=iface.app_id
    )
    model.segmenter.set_image(image_input)
    image_embedding = model.image_embedding
    original_size = model.original_size
    input_size = model.input_size

    if visual_chatgpt is not None:
        print('upload_callback: add caption to chatGPT memory')
        new_image_path = get_new_image_name('chat_image', func_name='upload')
        image_input.save(new_image_path)
        visual_chatgpt.current_image = new_image_path
        img_caption = model.captioner.inference(image_input, filter=False, args={'text_prompt':''})['caption']
        Human_prompt = f'\nHuman: The description of the image with path {new_image_path} is: {img_caption}. This information helps you to understand this image, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say \"Received\". \n'
        AI_prompt = "Received."
        visual_chatgpt.global_prompt = Human_prompt + 'AI: ' + AI_prompt
        visual_chatgpt.agent.memory.buffer = visual_chatgpt.agent.memory.buffer + visual_chatgpt.global_prompt 
        parsed_data = get_image_gpt(openai_api_key, new_image_path,"Please provide the name, artist, year of creation, and material used for this painting. Return the information in dictionary format without any newline characters. If any information is unavailable, return \"None\" for that field. Format as follows: { \"name\": \"Name of the painting\",\"artist\": \"Name of the artist\", \"year\": \"Year of creation\", \"material\": \"Material used in the painting\" }.")
        parsed_data = json.loads(parsed_data.replace("'", "\""))
        name, artist, year, material= parsed_data["name"],parsed_data["artist"],parsed_data["year"], parsed_data["material"]
        artwork_info = f"<div>Painting: {name}<br>Artist name: {artist}<br>Year: {year}<br>Material: {material}</div>"
        paragraph = get_image_gpt(openai_api_key, new_image_path,f"What's going on in this picture? in {language}")
    
    state = [(None, 'Received new image, resize it to width {} and height {}: '.format(image_input.size[0], image_input.size[1]))]

    return state, state, image_input, click_state, image_input, image_input, image_input, image_embedding, \
        original_size, input_size, artwork_info,artwork_info,paragraph




def inference_click(image_input, point_prompt, click_mode, enable_wiki, language, sentiment, factuality,
                    length, image_embedding, state, click_state, original_size, input_size, text_refiner, visual_chatgpt,
                    out_state, click_index_state, input_mask_state, input_points_state, input_labels_state, evt: gr.SelectData):
    click_index = evt.index

    if point_prompt == 'Positive':
        coordinate = "[[{}, {}, 1]]".format(str(click_index[0]), str(click_index[1]))
    else:
        coordinate = "[[{}, {}, 0]]".format(str(click_index[0]), str(click_index[1]))

    prompt = get_click_prompt(coordinate, click_state, click_mode)
    input_points = prompt['input_point']
    input_labels = prompt['input_label']

    controls = {'length': length,
                'sentiment': sentiment,
                'factuality': factuality,
                'language': language}

    model = build_caption_anything_with_models(
        args,
        api_key="",
        captioner=shared_captioner,
        sam_model=shared_sam_model,
        ocr_reader=shared_ocr_reader,
        text_refiner=text_refiner,
        session_id=iface.app_id
    )

    model.setup(image_embedding, original_size, input_size, is_image_set=True)
    
    enable_wiki = True if enable_wiki in ['True', 'TRUE', 'true', True, 'Yes', 'YES', 'yes'] else False
    out = model.inference(image_input, prompt, controls, disable_gpt=True, enable_wiki=enable_wiki, verbose=True, args={'clip_filter': False})[0]

    state = state + [("Image point: {}, Input label: {}".format(prompt["input_point"], prompt["input_label"]), None)]
    update_click_state(click_state, out['generated_captions']['raw_caption'], click_mode)
    text = out['generated_captions']['raw_caption']
    input_mask = np.array(out['mask'].convert('P'))
    image_input = mask_painter(np.array(image_input), input_mask)

    click_index_state = click_index
    input_mask_state = input_mask
    input_points_state = input_points
    input_labels_state = input_labels
    out_state = out  

    if visual_chatgpt is not None:
        print('inference_click: add caption to chatGPT memory')
        new_crop_save_path = get_new_image_name('chat_image', func_name='crop')
        Image.open(out["crop_save_path"]).save(new_crop_save_path)
        point_prompt = f'You should primarly use tools on the selected regional image (description: {text}, path: {new_crop_save_path}), which is a part of the whole image (path: {visual_chatgpt.current_image}). If human mentioned some objects not in the selected region, you can use tools on the whole image.'
        visual_chatgpt.point_prompt = point_prompt

    generated_caption = text
    print(generated_caption)
    print("new crop save",new_crop_save_path)

    yield state, state, click_state, image_input, generated_caption, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state,new_crop_save_path




def submit_caption(image_input, state, generated_caption, text_refiner, visual_chatgpt, enable_wiki, length, sentiment, factuality, language, 
                   out_state, click_index_state, input_mask_state, input_points_state, input_labels_state,
                   input_text, input_language, input_audio, input_mic, use_mic, agree,paragraph,focus_type,openai_api_key,new_crop_save_path):
    print("state",state)

    click_index = click_index_state
    input_mask = input_mask_state
    input_points = input_points_state
    input_labels = input_labels_state
    out = out_state
    focus_map = {
    "Inside the Mark": 0,
    "Around the Mark": 1,
    "Outside the Mark": 2
}

    mapped_value = focus_map.get(focus_type, -1)
    print("mapped value",mapped_value)

    controls = {
        'length': length,
        'sentiment': sentiment,
        'factuality': factuality,
        'language': language
    }

    prompt_list = [
    'Wiki_caption: {Wiki_caption}, you have to generate a caption according to the image and wiki caption. Around {length} words of {sentiment} sentiment in {language}.',
    'Wiki_caption: {Wiki_caption}, you have to select sentences from wiki caption that describe the surrounding objects that may be associated with the picture object. Around {length} words of {sentiment} sentiment in {language}.',
    'Wiki_caption: {Wiki_caption}. You have to choose sentences from the wiki caption that describe unrelated objects to the image. Around {length} words of {sentiment} sentiment in {language}.'
]
    

    if mapped_value != -1:
        prompt= prompt_list[mapped_value].format(
            raw_caption=generated_caption,
            Wiki_caption=paragraph,
            length=controls['length'],
            sentiment=controls['sentiment'],
            language=controls['language']
        )
        
    else:
        print("error prompting")
        prompt = "Invalid focus type."

    if controls['factuality'] == "Imagination":
        prompt += "Assuming that I am someone who has viewed a lot of art and has a lot of experience viewing art.  Explain artistic features (composition, color, style, or use of light) and discuss the symbolism of the content and its influence on later artistic movements"
    
    print("Prompt:", prompt)
    print("click",click_index)

    origin_image_input = image_input



    image_input = create_bubble_frame(np.array(image_input), generated_caption, click_index, input_mask,
                                      input_points=input_points, input_labels=input_labels)

    if generated_caption:
        state = state + [(None, f"RAW_Caption: {generated_caption}")]
        

        if not args.disable_gpt and text_refiner:
            print("new crop save",new_crop_save_path)
            focus_info=get_image_gpt(openai_api_key,new_crop_save_path,prompt)
            
            state = state + [(None, f"Wiki: {paragraph}")]
            state = state + [(None, f"Focus_Caption: {focus_info}")]
            print("new_cap",focus_info)
            refined_image_input = create_bubble_frame(np.array(origin_image_input), focus_info, click_index, input_mask,
                                                      input_points=input_points, input_labels=input_labels)
            try:
                waveform_visual, audio_output = tts.predict(focus_info, input_language, input_audio, input_mic, use_mic, agree)
                return state, state, refined_image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, waveform_visual, audio_output
            except Exception as e:
                state = state + [(None, f"Error during TTS prediction: {str(e)}")]
                print(f"Error during TTS prediction: {str(e)}")
                return state, state, refined_image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, None, None

        else:
            try:
                waveform_visual, audio_output = tts.predict(generated_caption, input_language, input_audio, input_mic, use_mic, agree)
                return state, state, image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, waveform_visual, audio_output
            except Exception as e:
                state = state + [(None, f"Error during TTS prediction: {str(e)}")]
                print(f"Error during TTS prediction: {str(e)}")
                return state, state, image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state, None, None


def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')
    
def get_image_gpt(api_key, image_path,prompt,enable_wiki=None):
    # Getting the base64 string
    base64_image = encode_image(image_path)
    
    

    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {api_key}"
    }

    prompt_text = prompt

    payload = {
        "model": "gpt-4o",
        "messages": [
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": prompt_text
                    },
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:image/jpeg;base64,{base64_image}"
                        }
                    }
                ]
            }
        ],
        "max_tokens": 300
    }

    # Sending the request to the OpenAI API
    response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
    result = response.json()
    print(result)
    content = result['choices'][0]['message']['content']
    # Assume the model returns a valid JSON string in 'content'
    try:
        return content
    except json.JSONDecodeError:
        return {"error": "Failed to parse model output"}




def get_sketch_prompt(mask: Image.Image):
    """
    Get the prompt for the sketcher.
    TODO: This is a temporary solution. We should cluster the sketch and get the bounding box of each cluster.
    """

    mask = np.asarray(mask)[..., 0]

    # Get the bounding box of the sketch
    y, x = np.where(mask != 0)
    x1, y1 = np.min(x), np.min(y)
    x2, y2 = np.max(x), np.max(y)

    prompt = {
        'prompt_type': ['box'],
        'input_boxes': [
            [x1, y1, x2, y2]
        ]
    }

    return prompt


def inference_traject(sketcher_image, enable_wiki, language, sentiment, factuality, length, image_embedding, state,
                      original_size, input_size, text_refiner):
    image_input, mask = sketcher_image['image'], sketcher_image['mask']

    prompt = get_sketch_prompt(mask)
    boxes = prompt['input_boxes']

    controls = {'length': length,
                'sentiment': sentiment,
                'factuality': factuality,
                'language': language}

    model = build_caption_anything_with_models(
        args,
        api_key="",
        captioner=shared_captioner,
        sam_model=shared_sam_model,
        ocr_reader=shared_ocr_reader,
        text_refiner=text_refiner,
        session_id=iface.app_id
    )

    model.setup(image_embedding, original_size, input_size, is_image_set=True)

    enable_wiki = True if enable_wiki in ['True', 'TRUE', 'true', True, 'Yes', 'YES', 'yes'] else False
    out = model.inference(image_input, prompt, controls, disable_gpt=True, enable_wiki=enable_wiki)[0]

    # Update components and states
    state.append((f'Box: {boxes}', None))
    state.append((None, f'raw_caption: {out["generated_captions"]["raw_caption"]}'))
    text = out['generated_captions']['raw_caption']
    input_mask = np.array(out['mask'].convert('P'))
    image_input = mask_painter(np.array(image_input), input_mask)

    origin_image_input = image_input

    fake_click_index = (int((boxes[0][0] + boxes[0][2]) / 2), int((boxes[0][1] + boxes[0][3]) / 2))
    image_input = create_bubble_frame(image_input, "", fake_click_index, input_mask)

    yield state, state, image_input

    if not args.disable_gpt and model.text_refiner:
        refined_caption = model.text_refiner.inference(query=text, controls=controls, context=out['context_captions'],
                                                       enable_wiki=enable_wiki)

        new_cap = refined_caption['caption']
        if refined_caption['wiki']:
            state = state + [(None, "Wiki: {}".format(refined_caption['wiki']))]
        state = state + [(None, f"caption: {new_cap}")]
        refined_image_input = create_bubble_frame(origin_image_input, new_cap, fake_click_index, input_mask)

        yield state, state, refined_image_input

def clear_chat_memory(visual_chatgpt, keep_global=False):
    if visual_chatgpt is not None:
        visual_chatgpt.memory.clear()
        visual_chatgpt.point_prompt = ""
        if keep_global:
            visual_chatgpt.agent.memory.buffer = visual_chatgpt.global_prompt
        else:
            visual_chatgpt.current_image = None
            visual_chatgpt.global_prompt = ""

def cap_everything(image_input, visual_chatgpt, text_refiner,input_language, input_audio, input_mic, use_mic, agree):
    
    model = build_caption_anything_with_models(
        args,
        api_key="",
        captioner=shared_captioner,
        sam_model=shared_sam_model,
        ocr_reader=shared_ocr_reader,
        text_refiner=text_refiner,
        session_id=iface.app_id
    )
    paragraph = model.inference_cap_everything(image_input, verbose=True)
    # state = state + [(None, f"Caption Everything: {paragraph}")]  
    Human_prompt = f'\nThe description of the image with path {visual_chatgpt.current_image} is:\n{paragraph}\nThis information helps you to understand this image, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say \"Received\". \n'
    AI_prompt = "Received."
    visual_chatgpt.global_prompt = Human_prompt + 'AI: ' + AI_prompt
    visual_chatgpt.agent.memory.buffer = visual_chatgpt.agent.memory.buffer + visual_chatgpt.global_prompt 
    waveform_visual, audio_output=tts.predict(paragraph, input_language, input_audio, input_mic, use_mic, agree)
    return paragraph,waveform_visual, audio_output

def cap_everything_withoutsound(image_input, visual_chatgpt, text_refiner,paragraph):
    
    model = build_caption_anything_with_models(
        args,
        api_key="",
        captioner=shared_captioner,
        sam_model=shared_sam_model,
        ocr_reader=shared_ocr_reader,
        text_refiner=text_refiner,
        session_id=iface.app_id
    )
    paragraph = model.inference_cap_everything(image_input, verbose=True)
    # state = state + [(None, f"Caption Everything: {paragraph}")]  
    Human_prompt = f'\nThe description of the image with path {visual_chatgpt.current_image} is:\n{paragraph}\nThis information helps you to understand this image, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say \"Received\". \n'
    AI_prompt = "Received."
    visual_chatgpt.global_prompt = Human_prompt + 'AI: ' + AI_prompt
    visual_chatgpt.agent.memory.buffer = visual_chatgpt.agent.memory.buffer + visual_chatgpt.global_prompt 
    return paragraph


    
def get_style():
    current_version = version.parse(gr.__version__)
    if current_version <= version.parse('3.24.1'):
        style = '''
        #image_sketcher{min-height:500px}
        #image_sketcher [data-testid="image"], #image_sketcher [data-testid="image"] > div{min-height: 500px}
        #image_upload{min-height:500px}
        #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 500px}
        '''
    elif current_version <= version.parse('3.27'):
        style = '''
        #image_sketcher{min-height:500px}
        #image_upload{min-height:500px}
        '''
    else:
        style = None

    return style


def create_ui():
    title = """<p><h1 align="center">EyeSee Anything in Art</h1></p>
    """
    description = """<p>Gradio demo for EyeSee Anything in Art, image to dense captioning generation with various language styles. To use it, simply upload your image, or click one of the examples to load them. """

    examples = [
        ["test_images/img36.webp"],
        ["test_images/MUS.png"],
        ["test_images/图片2.png"],
        ["test_images/img5.jpg"],
        ["test_images/img14.jpg"],
        ["test_images/qingming3.jpeg"],
        
    ]

    with gr.Blocks(
            css=get_style()
    ) as iface:
        state = gr.State([])
        out_state = gr.State(None)
        click_state = gr.State([[], [], []])
        origin_image = gr.State(None)
        image_embedding = gr.State(None)
        text_refiner = gr.State(None)
        visual_chatgpt = gr.State(None)
        original_size = gr.State(None)
        input_size = gr.State(None)
        generated_caption = gr.State("")
        paragraph = gr.State("")
        aux_state = gr.State([])
        click_index_state = gr.State((0, 0))
        input_mask_state = gr.State(np.zeros((1, 1)))
        input_points_state = gr.State([])
        input_labels_state = gr.State([])
        new_crop_save_path = gr.State(None)
    


        gr.Markdown(title)
        gr.Markdown(description)

        with gr.Row():
            with gr.Column(scale=1.0):
                with gr.Column(visible=False) as modules_not_need_gpt:
                    with gr.Tab("Base(GPT Power)",visible=False) as base_tab:
                        image_intro=gr.HTML()
                        image_input_base = gr.Image(type="pil", interactive=True, elem_id="image_upload")
                        example_image = gr.Image(type="pil", interactive=False, visible=False)
                       
                    with gr.Tab("Click") as click_tab:
                        image_intro_click=gr.HTML()
                        image_input = gr.Image(type="pil", interactive=True, elem_id="image_upload")
                        example_image = gr.Image(type="pil", interactive=False, visible=False)
                        with gr.Row(scale=1.0):
                             focus_type = gr.Radio(
                                    choices=["Inside the Mark", "Around the Mark", "Outside the Mark"],
                                    value="Inside the Mark",
                                    label="Focus Type",
                                    interactive=True)
                        with gr.Row(scale=1.0):
                            with gr.Row(scale=0.4):
                                point_prompt = gr.Radio(
                                    choices=["Positive", "Negative"],
                                    value="Positive",
                                    label="Point Prompt",
                                    interactive=True)
                                click_mode = gr.Radio(
                                    choices=["Continuous", "Single"],
                                    value="Continuous",
                                    label="Clicking Mode",
                                    interactive=True)
                            with gr.Row(scale=0.4):
                                clear_button_click = gr.Button(value="Clear Clicks", interactive=True)
                                clear_button_image = gr.Button(value="Clear Image", interactive=True)
                                submit_button_click=gr.Button(value="Submit", interactive=True)
                    with gr.Tab("Trajectory (beta)"):
                        sketcher_input = ImageSketcher(type="pil", interactive=True, brush_radius=20,
                                                       elem_id="image_sketcher")
                        with gr.Row():
                            submit_button_sketcher = gr.Button(value="Submit", interactive=True)

                with gr.Column(visible=False) as modules_need_gpt1:
                    with gr.Row(scale=1.0):
                        language = gr.Dropdown(
                            ['English', 'Chinese', 'French', "Spanish", "Arabic", "Portuguese", "Cantonese"],
                            value="English", label="Language", interactive=True)
                        sentiment = gr.Radio(
                            choices=["Positive", "Natural", "Negative"],
                            value="Natural",
                            label="Sentiment",
                            interactive=True,
                        )
                    with gr.Row(scale=1.0):
                        factuality = gr.Radio(
                            choices=["Factual", "Imagination"],
                            value="Factual",
                            label="Factuality",
                            interactive=True,
                        )
                        length = gr.Slider(
                            minimum=10,
                            maximum=80,
                            value=10,
                            step=1,
                            interactive=True,
                            label="Generated Caption Length",
                        )
                        # 是否启用wiki内容整合到caption中
                        enable_wiki = gr.Radio(
                            choices=["Yes", "No"],
                            value="No",
                            label="Enable Wiki",
                            interactive=True)

                # with gr.Column(visible=True) as modules_not_need_gpt3:
                gr.Examples(
                    examples=examples,
                    inputs=[example_image],
                )

            with gr.Column(scale=0.5):
                with gr.Column(visible=True) as module_key_input:
                    openai_api_key = gr.Textbox(
                        placeholder="Input openAI API key",
                        show_label=False,
                        label="OpenAI API Key",
                        lines=1,
                        type="password")
                    with gr.Row(scale=0.5):
                        enable_chatGPT_button = gr.Button(value="Run with ChatGPT", interactive=True, variant='primary')
                        disable_chatGPT_button = gr.Button(value="Run without ChatGPT (Faster)", interactive=True,
                                                        variant='primary')
                with gr.Column(visible=False) as module_notification_box:
                    notification_box = gr.Textbox(lines=1, label="Notification", max_lines=5, show_label=False)
                
                with gr.Column():
                    with gr.Column(visible=False) as modules_need_gpt2: 
                        paragraph_output = gr.Textbox(lines=7, label="Describe Everything", max_lines=7)
                    with gr.Column(visible=False) as modules_need_gpt0:
                        cap_everything_button = gr.Button(value="Caption Everything in a Paragraph", interactive=True)
                
                with gr.Column(visible=False) as modules_not_need_gpt2: 
                    chatbot = gr.Chatbot(label="Chatbox", ).style(height=550, scale=0.5)
                    with gr.Column(visible=False) as modules_need_gpt3:
                        chat_input = gr.Textbox(show_label=False, placeholder="Enter text and press Enter").style(
                            container=False)
                        with gr.Row():
                            clear_button_text = gr.Button(value="Clear Text", interactive=True)
                            submit_button_text = gr.Button(value="Submit", interactive=True, variant="primary")
            
            with gr.Column(scale=0.5):
                # TTS interface hidden initially
                with gr.Column(visible=False) as tts_interface:
                    input_text = gr.Textbox(label="Text Prompt", value="Hello, World !, here is an example of light voice cloning. Try to upload your best audio samples quality")
                    input_language = gr.Dropdown(label="Language", choices=["en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn"], value="en")
                    input_audio = gr.Audio(label="Reference Audio", type="filepath", value="examples/female.wav")
                    input_mic = gr.Audio(source="microphone", type="filepath", label="Use Microphone for Reference")
                    use_mic = gr.Checkbox(label="Check to use Microphone as Reference", value=False)
                    agree = gr.Checkbox(label="Agree", value=True)
                    output_waveform = gr.Video(label="Waveform Visual")
                    output_audio = gr.HTML(label="Synthesised Audio")

                    with gr.Row():
                        submit_tts = gr.Button(value="Submit", interactive=True)
                        clear_tts = gr.Button(value="Clear", interactive=True)


        def clear_tts_fields():
            return [gr.update(value=""), gr.update(value=""), None, None, gr.update(value=False), gr.update(value=True), None, None]
        
        submit_tts.click(
            tts.predict,
            inputs=[input_text, input_language, input_audio, input_mic, use_mic, agree],
            outputs=[output_waveform, output_audio],
            queue=True
        )

        clear_tts.click(
            clear_tts_fields,
            inputs=None,
            outputs=[input_text, input_language, input_audio, input_mic, use_mic, agree, output_waveform, output_audio],
            queue=False
        )

        
        openai_api_key.submit(init_openai_api_key, inputs=[openai_api_key],
                              outputs=[modules_need_gpt0, modules_need_gpt1, modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt,
                                       modules_not_need_gpt2, tts_interface,module_key_input ,module_notification_box, text_refiner, visual_chatgpt, notification_box])
        enable_chatGPT_button.click(init_openai_api_key, inputs=[openai_api_key],
                                    outputs=[modules_need_gpt0, modules_need_gpt1, modules_need_gpt2, modules_need_gpt3,
                                             modules_not_need_gpt,
                                             modules_not_need_gpt2, tts_interface,module_key_input,module_notification_box, text_refiner, visual_chatgpt, notification_box])
        disable_chatGPT_button.click(init_wo_openai_api_key,
                                     outputs=[modules_need_gpt0, modules_need_gpt1, modules_need_gpt2, modules_need_gpt3,
                                              modules_not_need_gpt,
                                              modules_not_need_gpt2, tts_interface,module_key_input, module_notification_box, text_refiner, visual_chatgpt, notification_box])
        
        enable_chatGPT_button.click(
            lambda: (None, [], [], [[], [], []], "", "", ""),
            [],
            [image_input, chatbot, state, click_state, paragraph_output, origin_image],
            queue=False,
            show_progress=False
        )
        openai_api_key.submit(
            lambda: (None, [], [], [[], [], []], "", "", ""),
            [],
            [image_input, chatbot, state, click_state, paragraph_output, origin_image],
            queue=False,
            show_progress=False
        )

        cap_everything_button.click(cap_everything, [origin_image, visual_chatgpt, text_refiner,input_language, input_audio, input_mic, use_mic, agree], 
                                    [paragraph_output,output_waveform, output_audio])
        
        clear_button_click.click(
            lambda x: ([[], [], []], x),
            [origin_image],
            [click_state, image_input],
            queue=False,
            show_progress=False
        )
        clear_button_click.click(functools.partial(clear_chat_memory, keep_global=True), inputs=[visual_chatgpt])
        clear_button_image.click(
            lambda: (None, [], [], [[], [], []], "", "", ""),
            [],
            [image_input, chatbot, state, click_state, paragraph_output, origin_image],
            queue=False,
            show_progress=False
        )
        clear_button_image.click(clear_chat_memory, inputs=[visual_chatgpt])
        clear_button_text.click(
            lambda: ([], [], [[], [], [], []]),
            [],
            [chatbot, state, click_state],
            queue=False,
            show_progress=False
        )
        clear_button_text.click(clear_chat_memory, inputs=[visual_chatgpt])
        
        image_input.clear(
            lambda: (None, [], [], [[], [], []], "", "", ""),
            [],
            [image_input, chatbot, state, click_state, paragraph_output, origin_image],
            queue=False,
            show_progress=False
        )

        image_input.clear(clear_chat_memory, inputs=[visual_chatgpt])


        

        image_input_base.upload(upload_callback, [image_input_base, state, visual_chatgpt,openai_api_key],
                           [chatbot, state, origin_image, click_state, image_input, image_input_base, sketcher_input,
                            image_embedding, original_size, input_size,image_intro,image_intro_click,paragraph])
        
        image_input.upload(upload_callback, [image_input, state, visual_chatgpt, openai_api_key],
                           [chatbot, state, origin_image, click_state, image_input, image_input_base, sketcher_input,
                            image_embedding, original_size, input_size,image_intro,image_intro_click,paragraph])
        sketcher_input.upload(upload_callback, [sketcher_input, state, visual_chatgpt, openai_api_key],
                              [chatbot, state, origin_image, click_state, image_input, image_input_base, sketcher_input,
                               image_embedding, original_size, input_size,image_intro,image_intro_click,paragraph])
        chat_input.submit(chat_input_callback, [visual_chatgpt, chat_input, click_state, state, aux_state],
                          [chatbot, state, aux_state])
        chat_input.submit(lambda: "", None, chat_input)
        submit_button_text.click(chat_input_callback, [visual_chatgpt, chat_input, click_state, state, aux_state],
                          [chatbot, state, aux_state])
        submit_button_text.click(lambda: "", None, chat_input)
        example_image.change(upload_callback, [example_image, state, visual_chatgpt, openai_api_key],
                             [chatbot, state, origin_image, click_state, image_input, image_input_base, sketcher_input,
                              image_embedding, original_size, input_size,image_intro,image_intro_click,paragraph])

        example_image.change(clear_chat_memory, inputs=[visual_chatgpt])

        def on_click_tab_selected():
            if gpt_state ==1:
                print(gpt_state)
                print("using gpt")
                return [gr.update(visible=True)]*2+[gr.update(visible=False)]*2
            else: 
                print("no gpt")
                print("gpt_state",gpt_state)
                return [gr.update(visible=False)]+[gr.update(visible=True)]+[gr.update(visible=False)]*2
        
        def on_base_selected():
            if gpt_state ==1:
                print(gpt_state)
                print("using gpt")
                return [gr.update(visible=True)]*2+[gr.update(visible=False)]*2
            else: 
                print("no gpt")
                return [gr.update(visible=False)]*4
        

        click_tab.select(on_click_tab_selected, outputs=[modules_need_gpt1,modules_not_need_gpt2,modules_need_gpt0,modules_need_gpt2])
        base_tab.select(on_base_selected, outputs=[modules_need_gpt0,modules_need_gpt2,modules_not_need_gpt2,modules_need_gpt1])

  
  

        image_input.select(
            inference_click,
            inputs=[
                origin_image, point_prompt, click_mode, enable_wiki, language, sentiment, factuality, length,
                image_embedding, state, click_state, original_size, input_size, text_refiner, visual_chatgpt,
                out_state, click_index_state, input_mask_state, input_points_state, input_labels_state
            ],
            outputs=[chatbot, state, click_state, image_input, generated_caption, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state,new_crop_save_path],
            show_progress=False, queue=True
        )


        submit_button_click.click(
            submit_caption,
            inputs=[
        image_input, state, generated_caption, text_refiner, visual_chatgpt, enable_wiki, length, sentiment, factuality, language, 
        out_state, click_index_state, input_mask_state, input_points_state, input_labels_state,
        input_text, input_language, input_audio, input_mic, use_mic, agree,paragraph,focus_type,openai_api_key,new_crop_save_path
    ],
            outputs=[
                chatbot, state, image_input, click_index_state, input_mask_state, input_points_state, input_labels_state, out_state,
                output_waveform, output_audio 
            ],
            show_progress=True,
            queue=True
        )



        submit_button_sketcher.click(
            inference_traject,
            inputs=[
                sketcher_input, enable_wiki, language, sentiment, factuality, length, image_embedding, state,
                original_size, input_size, text_refiner
            ],
            outputs=[chatbot, state, sketcher_input],
            show_progress=False, queue=True
        )





        return iface


if __name__ == '__main__':
    iface = create_ui()
    iface.queue(concurrency_count=5, api_open=False, max_size=10)
    iface.launch(server_name="0.0.0.0", enable_queue=True)