Spaces:
No application file
No application file
Ezhil
commited on
Commit
·
2ed4404
0
Parent(s):
Initial commit
Browse files- README.md +8 -0
- main.py +55 -0
- models/__pycache__/sentiment_model.cpython-310.pyc +0 -0
- models/sentiment_model.py +7 -0
- requirements.txt +5 -0
- utils/__pycache__/file_handler.cpython-310.pyc +0 -0
- utils/file_handler.py +13 -0
README.md
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Streamlit Sentiment Analysis
|
3 |
+
emoji: 🐠
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
---
|
main.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import time
|
4 |
+
import plotly.express as px
|
5 |
+
from utils.file_handler import validate_file
|
6 |
+
from models.sentiment_model import load_model
|
7 |
+
|
8 |
+
# Constants
|
9 |
+
MAX_FILE_SIZE_MB = 500
|
10 |
+
|
11 |
+
# Load sentiment analysis pipeline
|
12 |
+
sentiment_pipeline = load_model()
|
13 |
+
|
14 |
+
st.title("📊 Sentiment Analysis App")
|
15 |
+
|
16 |
+
# File upload
|
17 |
+
uploaded_file = st.file_uploader("Upload a CSV file (Max: 500MB)", type=["csv"])
|
18 |
+
|
19 |
+
if uploaded_file is not None:
|
20 |
+
if validate_file(uploaded_file, MAX_FILE_SIZE_MB):
|
21 |
+
df = pd.read_csv(uploaded_file)
|
22 |
+
|
23 |
+
# Check for 'text' column or ask user for correct column
|
24 |
+
if "text" not in df.columns:
|
25 |
+
text_column = st.selectbox("Select the column containing text values", df.columns)
|
26 |
+
else:
|
27 |
+
text_column = "text"
|
28 |
+
|
29 |
+
if st.button("Analyze Sentiment"):
|
30 |
+
st.write("Processing sentiment analysis...")
|
31 |
+
progress_bar = st.progress(0)
|
32 |
+
|
33 |
+
sentiments = []
|
34 |
+
for i, text in enumerate(df[text_column].dropna()):
|
35 |
+
result = sentiment_pipeline(text)
|
36 |
+
sentiments.append(result[0]["label"])
|
37 |
+
progress_bar.progress((i + 1) / len(df))
|
38 |
+
time.sleep(0.1)
|
39 |
+
|
40 |
+
df["Sentiment"] = sentiments
|
41 |
+
|
42 |
+
# Display results
|
43 |
+
st.write("Sentiment Analysis Results:")
|
44 |
+
st.dataframe(df[[text_column, "Sentiment"]])
|
45 |
+
|
46 |
+
# Create pie chart
|
47 |
+
sentiment_counts = df["Sentiment"].value_counts().reset_index()
|
48 |
+
sentiment_counts.columns = ["Sentiment", "Count"]
|
49 |
+
fig = px.pie(sentiment_counts, names="Sentiment", values="Count", title="Sentiment Distribution")
|
50 |
+
st.plotly_chart(fig)
|
51 |
+
|
52 |
+
# Allow CSV download
|
53 |
+
st.download_button("Download Results", df.to_csv(index=False), "sentiment_results.csv", "text/csv")
|
54 |
+
else:
|
55 |
+
st.error("File exceeds the maximum allowed size of 500MB. Please upload a smaller file.")
|
models/__pycache__/sentiment_model.cpython-310.pyc
ADDED
Binary file (492 Bytes). View file
|
|
models/sentiment_model.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
@st.cache_resource
|
5 |
+
def load_model():
|
6 |
+
"""Load the sentiment analysis model."""
|
7 |
+
return pipeline("sentiment-analysis", model="tabularisai/multilingual-sentiment-analysis")
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
transformers
|
4 |
+
torch
|
5 |
+
plotly
|
utils/__pycache__/file_handler.cpython-310.pyc
ADDED
Binary file (605 Bytes). View file
|
|
utils/file_handler.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
def validate_file(uploaded_file, max_size_mb):
|
4 |
+
"""
|
5 |
+
Validates the uploaded file size.
|
6 |
+
:param uploaded_file: The uploaded file object.
|
7 |
+
:param max_size_mb: The maximum allowed file size in MB.
|
8 |
+
:return: True if file size is within limit, else False.
|
9 |
+
"""
|
10 |
+
max_size_bytes = max_size_mb * 1024 * 1024 # Convert MB to Bytes
|
11 |
+
if uploaded_file.size > max_size_bytes:
|
12 |
+
return False
|
13 |
+
return True
|