import streamlit as st import pandas as pd import time import plotly.express as px from utils.file_handler import validate_file from models.sentiment_model import load_model # Constants MAX_FILE_SIZE_MB = 500 # Load sentiment analysis pipeline sentiment_pipeline = load_model() st.title("📊 Sentiment Analysis App") # File upload uploaded_file = st.file_uploader("Upload a CSV file (Max: 500MB)", type=["csv"]) if uploaded_file is not None: if validate_file(uploaded_file, MAX_FILE_SIZE_MB): df = pd.read_csv(uploaded_file) # Check for 'text' column or ask user for correct column if "text" not in df.columns: text_column = st.selectbox("Select the column containing text values", df.columns) else: text_column = "text" if st.button("Analyze Sentiment"): st.write("Processing sentiment analysis...") progress_bar = st.progress(0) sentiments = [] for i, text in enumerate(df[text_column].dropna()): result = sentiment_pipeline(text) sentiments.append(result[0]["label"]) progress_bar.progress((i + 1) / len(df)) time.sleep(0.1) df["Sentiment"] = sentiments # Display results st.write("Sentiment Analysis Results:") st.dataframe(df[[text_column, "Sentiment"]]) # Create pie chart sentiment_counts = df["Sentiment"].value_counts().reset_index() sentiment_counts.columns = ["Sentiment", "Count"] fig = px.pie(sentiment_counts, names="Sentiment", values="Count", title="Sentiment Distribution") st.plotly_chart(fig) # Allow CSV download st.download_button("Download Results", df.to_csv(index=False), "sentiment_results.csv", "text/csv") else: st.error("File exceeds the maximum allowed size of 500MB. Please upload a smaller file.")