FDSRashid commited on
Commit
63838c1
·
verified ·
1 Parent(s): 7aaeb10

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -4,7 +4,7 @@ import gradio as gr
4
  import os
5
  import pandas as pd
6
  from datasets import load_dataset
7
- from sklearn.metrics.pairwise import cosine_similarity
8
  from datasets import Features, Value
9
  import plotly.express as px
10
 
@@ -16,7 +16,7 @@ Secret_token = os.getenv('HF_token')
16
  dataset = load_dataset("FDSRashid/embed_matn", token = Secret_token)
17
  books = load_dataset('FDSRashid/Hadith_info', data_files='Books.csv', token=Secret_token)['train'].to_pandas()
18
  df = dataset["train"].to_pandas()
19
-
20
 
21
  dataset = load_dataset("FDSRashid/hadith_info", data_files = 'All_Matns.csv',token = Secret_token, features = features)
22
  matn_info = dataset['train'].to_pandas()
@@ -39,12 +39,12 @@ joined_df = pd.merge(matn_info,df[cols_to_use],left_index=True, right_index=True
39
  df = joined_df.copy()
40
  taraf_max = np.max(df['taraf_ID'].unique())
41
 
42
- def plot_similarity_score(taraf_num):
43
  taraf_df = df[df['taraf_ID']== taraf_num]
44
  taraf_df['Number'] = np.arange(len(taraf_df))
45
  embed_taraf = taraf_df['embed'].to_list()
46
- cos_score = cosine_similarity(embed_taraf)
47
- fig = px.imshow(cos_score)
48
  matr = cos_score
49
  rows, cols = matr.shape
50
  mask = np.tril(np.ones((rows, cols), dtype=bool), k=-1)
@@ -55,6 +55,7 @@ def plot_similarity_score(taraf_num):
55
 
56
  with gr.Blocks() as demo:
57
  taraf_number = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1)
 
58
  btn = gr.Button('Submit')
59
  btn.click(fn = plot_similarity_score, inputs = [taraf_number], outputs = [gr.Plot(),gr.Plot(), gr.DataFrame()])
60
  demo.launch()
 
4
  import os
5
  import pandas as pd
6
  from datasets import load_dataset
7
+ from sklearn.metrics.pairwise import cosine_similarity, pairwise_distance
8
  from datasets import Features, Value
9
  import plotly.express as px
10
 
 
16
  dataset = load_dataset("FDSRashid/embed_matn", token = Secret_token)
17
  books = load_dataset('FDSRashid/Hadith_info', data_files='Books.csv', token=Secret_token)['train'].to_pandas()
18
  df = dataset["train"].to_pandas()
19
+ choice = ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan', 'canberra', 'chebyshev']
20
 
21
  dataset = load_dataset("FDSRashid/hadith_info", data_files = 'All_Matns.csv',token = Secret_token, features = features)
22
  matn_info = dataset['train'].to_pandas()
 
39
  df = joined_df.copy()
40
  taraf_max = np.max(df['taraf_ID'].unique())
41
 
42
+ def plot_similarity_score(taraf_num, metr):
43
  taraf_df = df[df['taraf_ID']== taraf_num]
44
  taraf_df['Number'] = np.arange(len(taraf_df))
45
  embed_taraf = taraf_df['embed'].to_list()
46
+ cos_score = pairwise_distance(embed_taraf, metric = metr)
47
+ fig = px.imshow(cos_score, color_continuous_scale='plasma_r')
48
  matr = cos_score
49
  rows, cols = matr.shape
50
  mask = np.tril(np.ones((rows, cols), dtype=bool), k=-1)
 
55
 
56
  with gr.Blocks() as demo:
57
  taraf_number = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1)
58
+ metric = gr.Dropdown(choices = choice, value = 'cosine', label = 'Variable to Display', info = 'Choose the variable to visualize.')
59
  btn = gr.Button('Submit')
60
  btn.click(fn = plot_similarity_score, inputs = [taraf_number], outputs = [gr.Plot(),gr.Plot(), gr.DataFrame()])
61
  demo.launch()