included book information
Browse files
app.py
CHANGED
@@ -13,6 +13,22 @@ dataset = load_dataset("FDSRashid/embed_matn", token = Secret_token)
|
|
13 |
df = dataset["train"].to_pandas()
|
14 |
taraf_max = np.max(df['taraf_ID'].unique())
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def plot_similarity_score(taraf_num):
|
17 |
taraf_df = df[df['taraf_ID']== taraf_num]
|
18 |
taraf_df['Number'] = np.arange(len(taraf_df))
|
@@ -25,7 +41,7 @@ def plot_similarity_score(taraf_num):
|
|
25 |
lower_triangle = matr[mask]
|
26 |
data = lower_triangle.flatten()
|
27 |
fig_dis = px.histogram(x = data, title = f'Similarity Distribution for Taraf {taraf_num}', labels = {'x': 'Similarity Score'}, nbins = 20, template = 'ggplot2' )
|
28 |
-
return fig, fig_dis, taraf_df[['matn', 'Number']]
|
29 |
|
30 |
with gr.Blocks() as demo:
|
31 |
taraf_number = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1)
|
|
|
13 |
df = dataset["train"].to_pandas()
|
14 |
taraf_max = np.max(df['taraf_ID'].unique())
|
15 |
|
16 |
+
dataset = load_dataset("FDSRashid/hadith_info", data_files = 'All_Matns.csv',token = Secret_token, features = features)
|
17 |
+
matn_info = dataset['train'].to_pandas()
|
18 |
+
matn_info = matn_info.drop(97550)
|
19 |
+
matn_info = matn_info.drop(307206)
|
20 |
+
matn_info['taraf_ID'] = matn_info['taraf_ID'].replace('KeyAbsent', -1)
|
21 |
+
|
22 |
+
matn_info['Book'] = matn_info['bookid_hadithid'].apply(lambda x: books[books['Book_ID'] == int(x.split('_')[0])]['Book_Name'].to_list()[0])
|
23 |
+
matn_info['Author'] = matn_info['bookid_hadithid'].apply(lambda x: books[books['Book_ID'] == int(x.split('_')[0])]['Author'].to_list()[0])
|
24 |
+
matn_info['Hadith Number'] = matn_info['bookid_hadithid'].apply(lambda x: x.split('_')[1])
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
joined_df = matn_info.merge(df, left_index=True, right_on='__index_level_0__')
|
29 |
+
df = joined_df.copy()
|
30 |
+
|
31 |
+
|
32 |
def plot_similarity_score(taraf_num):
|
33 |
taraf_df = df[df['taraf_ID']== taraf_num]
|
34 |
taraf_df['Number'] = np.arange(len(taraf_df))
|
|
|
41 |
lower_triangle = matr[mask]
|
42 |
data = lower_triangle.flatten()
|
43 |
fig_dis = px.histogram(x = data, title = f'Similarity Distribution for Taraf {taraf_num}', labels = {'x': 'Similarity Score'}, nbins = 20, template = 'ggplot2' )
|
44 |
+
return fig, fig_dis, taraf_df[['matn', 'Number', 'Book', 'Author', 'Hadith Number']]
|
45 |
|
46 |
with gr.Blocks() as demo:
|
47 |
taraf_number = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1)
|