Spaces:
Running
Running
File size: 10,332 Bytes
762b8c6 5dc0abf f3a0d02 762b8c6 5dc0abf 762b8c6 5dc0abf 762b8c6 f3a0d02 762b8c6 f3a0d02 762b8c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
from huggingface_hub import login
from datasets import load_dataset, Dataset, concatenate_datasets
import json
from config import HF_TOKEN, DATASET_NAME
def init_huggingface():
"""Initialize Hugging Face authentication."""
if HF_TOKEN is None:
raise ValueError("Hugging Face token not found in environment variables.")
login(token=HF_TOKEN)
def update_dataset(json_data):
"""Update the Hugging Face dataset with new data."""
if json_data is None or json_data.startswith("The following fields are required"):
return json_data or "No data to submit. Please fill in all required fields."
try:
data = json.loads(json_data)
except json.JSONDecodeError:
return "Invalid JSON data. Please ensure all required fields are filled correctly."
try:
dataset = load_dataset(DATASET_NAME, split="train")
except:
dataset = Dataset.from_dict({})
new_data = create_flattened_data(data)
new_dataset = Dataset.from_dict(new_data)
if len(dataset) > 0:
updated_dataset = concatenate_datasets([dataset, new_dataset])
else:
updated_dataset = new_dataset
updated_dataset.push_to_hub(DATASET_NAME)
return "Data submitted successfully and dataset updated!"
def create_flattened_data(data):
"""Create a flattened data structure for the dataset."""
# Handle hyperparameters
hyperparameters = data.get("task", {}).get("algorithms", [{}])[0].get("hyperparameters", {}).get("values", [])
# Process hyperparameters
hyperparameter_names = []
hyperparameter_values = []
for hp in hyperparameters:
if "name" in hp and "value" in hp: # Match the keys used in JSON
hyperparameter_names.append(hp["name"])
hyperparameter_values.append(str(hp["value"]))
hyperparameter_name_str = ", ".join(hyperparameter_names) if hyperparameter_names else None
hyperparameter_value_str = ", ".join(hyperparameter_values) if hyperparameter_values else None
# Handle inference properties
inference_props = data.get("task", {}).get("dataset", [{}])[0].get("inferenceProperties", [])
# Process inference properties
inference_data = []
for props in inference_props:
if props:
inference_data.append({
"nbRequest": props.get("nbRequest"),
"nbTokensInput": props.get("nbTokensInput"),
"nbWordsInput": props.get("nbWordsInput"),
"nbTokensOutput": props.get("nbTokensOutput"),
"nbWordsOutput": props.get("nbWordsOutput"),
"contextWindowSize": props.get("contextWindowSize"),
"cache": props.get("cache")
})
nbRequest_str = ", ".join([str(p["nbRequest"]) for p in inference_data if p.get("nbRequest")]) if inference_data else None
nbTokensInput_str = ", ".join([str(p["nbTokensInput"]) for p in inference_data if p.get("nbTokensInput")]) if inference_data else None
nbWordsInput_str = ", ".join([str(p["nbWordsInput"]) for p in inference_data if p.get("nbWordsInput")]) if inference_data else None
nbTokensOutput_str = ", ".join([str(p["nbTokensOutput"]) for p in inference_data if p.get("nbTokensOutput")]) if inference_data else None
nbWordsOutput_str = ", ".join([str(p["nbWordsOutput"]) for p in inference_data if p.get("nbWordsOutput")]) if inference_data else None
contextWindowSize_str = ", ".join([str(p["contextWindowSize"]) for p in inference_data if p.get("contextWindowSize")]) if inference_data else None
cache_str = ", ".join([str(p["cache"]) for p in inference_data if p.get("cache")]) if inference_data else None
# Handle components
components = data.get("infrastructure", {}).get("components", [])
component_data = []
for comp in components:
if comp:
component_data.append({
"componentName": comp.get("componentName"),
"nbComponent": comp.get("nbComponent"),
"memorySize": comp.get("memorySize"),
"manufacturer": comp.get("manufacturer"),
"family": comp.get("family"),
"series": comp.get("series"),
"share": comp.get("share")
})
componentName_str = ", ".join([str(p["componentName"]) for p in component_data if p.get("componentName")]) if component_data else None
nbComponent_str = ", ".join([str(p["nbComponent"]) for p in component_data if p.get("nbComponent")]) if component_data else None
memorySize_str = ", ".join([str(p["memorySize"]) for p in component_data if p.get("memorySize")]) if component_data else None
manufacturer_infra_str = ", ".join([str(p["manufacturer"]) for p in component_data if p.get("manufacturer")]) if component_data else None
family_str = ", ".join([str(p["family"]) for p in component_data if p.get("family")]) if component_data else None
series_str = ", ".join([str(p["series"]) for p in component_data if p.get("series")]) if component_data else None
share_str = ", ".join([str(p["share"]) for p in component_data if p.get("share")]) if component_data else None
return {
# Header
"licensing": [data["header"]["licensing"]],
"formatVersion": [data["header"]["formatVersion"]],
"formatVersionSpecificationUri": [data["header"]["formatVersionSpecificationUri"]],
"reportId": [data["header"]["reportId"]],
"reportDatetime": [data["header"]["reportDatetime"]],
"reportStatus": [data["header"]["reportStatus"]],
"publisher_name": [data["header"]["publisher"]["name"]],
"publisher_division": [data["header"]["publisher"]["division"]],
"publisher_projectName": [data["header"]["publisher"]["projectName"]],
"publisher_confidentialityLevel": [data["header"]["publisher"]["confidentialityLevel"]],
"publisher_publicKey": [data["header"]["publisher"]["publicKey"]],
# Task
"taskType": [data["task"]["taskType"]],
"taskFamily": [data["task"]["taskFamily"]],
"taskStage": [data["task"]["taskStage"]],
"algorithmName": [data["task"]["algorithms"][0]["algorithmName"]],
"framework": [data["task"]["algorithms"][0]["framework"]],
"frameworkVersion": [data["task"]["algorithms"][0]["frameworkVersion"]],
"classPath": [data["task"]["algorithms"][0]["classPath"]],
"tuning_method": [data["task"]["algorithms"][0]["hyperparameters"]["tuning_method"]],
"hyperparameterName": [hyperparameter_name_str],
"hyperparameterValue": [hyperparameter_value_str],
"quantization": [data["task"]["algorithms"][0]["quantization"]],
"dataType": [data["task"]["dataset"][0]["dataType"]],
"fileType": [data["task"]["dataset"][0]["fileType"]],
"volume": [data["task"]["dataset"][0]["volume"]],
"volumeUnit": [data["task"]["dataset"][0]["volumeUnit"]],
"items": [data["task"]["dataset"][0]["items"]],
"shape_item": [data["task"]["dataset"][0]["shape"][0]["item"]],
"nbRequest": [nbRequest_str],
"nbTokensInput": [nbTokensInput_str],
"nbWordsInput": [nbWordsInput_str],
"nbTokensOutput": [nbTokensOutput_str],
"nbWordsOutput": [nbWordsOutput_str],
"contextWindowSize": [contextWindowSize_str],
"cache": [cache_str],
"source": [data["task"]["dataset"][0]["source"]],
"sourceUri": [data["task"]["dataset"][0]["sourceUri"]],
"owner": [data["task"]["dataset"][0]["owner"]],
"measuredAccuracy": [data["task"]["measuredAccuracy"]],
"estimatedAccuracy": [data["task"]["estimatedAccuracy"]],
# Measures
"measurementMethod": [data["measures"][0]["measurementMethod"]],
"manufacturer": [data["measures"][0]["manufacturer"]],
"version": [data["measures"][0]["version"]],
"cpuTrackingMode": [data["measures"][0]["cpuTrackingMode"]],
"gpuTrackingMode": [data["measures"][0]["gpuTrackingMode"]],
"averageUtilizationCpu": [data["measures"][0]["averageUtilizationCpu"]],
"averageUtilizationGpu": [data["measures"][0]["averageUtilizationGpu"]],
"serverSideInference": [data["measures"][0]["serverSideInference"]],
"unit": [data["measures"][0]["unit"]],
"powerCalibrationMeasurement": [data["measures"][0]["powerCalibrationMeasurement"]],
"durationCalibrationMeasurement": [data["measures"][0]["durationCalibrationMeasurement"]],
"powerConsumption": [data["measures"][0]["powerConsumption"]],
"measurementDuration": [data["measures"][0]["measurementDuration"]],
"measurementDateTime": [data["measures"][0]["measurementDateTime"]],
# System
"os": [data["system"]["os"]],
"distribution": [data["system"]["distribution"]],
"distributionVersion": [data["system"]["distributionVersion"]],
# Software
"language": [data["software"]["language"]],
"version_software": [data["software"]["version"]],
# Infrastructure
"infraType": [data["infrastructure"]["infraType"]],
"cloudProvider": [data["infrastructure"]["cloudProvider"]],
"cloudInstance": [data["infrastructure"]["cloudInstance"]],
"componentName": [componentName_str],
"nbComponent": [nbComponent_str],
"memorySize": [memorySize_str],
"manufacturer_infra": [manufacturer_infra_str],
"family": [family_str],
"series": [series_str],
"share": [share_str],
# Environment
"country": [data["environment"]["country"]],
"latitude": [data["environment"]["latitude"]],
"longitude": [data["environment"]["longitude"]],
"location": [data["environment"]["location"]],
"powerSupplierType": [data["environment"]["powerSupplierType"]],
"powerSource": [data["environment"]["powerSource"]],
"powerSourceCarbonIntensity": [data["environment"]["powerSourceCarbonIntensity"]],
# Quality
"quality": [data["quality"]],
# Hash
"hashAlgorithm": [data["$hash"]["hashAlgorithm"]],
"cryptographicAlgorithm": [data["$hash"]["cryptographicAlgorithm"]],
"value": [data["$hash"]["ecryptedValue"]]
} |