File size: 10,332 Bytes
762b8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dc0abf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a0d02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
762b8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dc0abf
 
762b8c6
 
 
 
 
 
 
5dc0abf
 
 
 
 
 
 
762b8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a0d02
 
 
 
 
 
 
762b8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a0d02
762b8c6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from huggingface_hub import login
from datasets import load_dataset, Dataset, concatenate_datasets
import json
from config import HF_TOKEN, DATASET_NAME

def init_huggingface():
    """Initialize Hugging Face authentication."""
    if HF_TOKEN is None:
        raise ValueError("Hugging Face token not found in environment variables.")
    login(token=HF_TOKEN)

def update_dataset(json_data):
    """Update the Hugging Face dataset with new data."""
    if json_data is None or json_data.startswith("The following fields are required"):
        return json_data or "No data to submit. Please fill in all required fields."

    try:
        data = json.loads(json_data)
    except json.JSONDecodeError:
        return "Invalid JSON data. Please ensure all required fields are filled correctly."
    
    try:
        dataset = load_dataset(DATASET_NAME, split="train")
    except:
        dataset = Dataset.from_dict({})

    new_data = create_flattened_data(data)
    new_dataset = Dataset.from_dict(new_data)
    
    if len(dataset) > 0:
        updated_dataset = concatenate_datasets([dataset, new_dataset])
    else:
        updated_dataset = new_dataset

    updated_dataset.push_to_hub(DATASET_NAME)
    return "Data submitted successfully and dataset updated!"

def create_flattened_data(data):
    """Create a flattened data structure for the dataset."""
    # Handle hyperparameters
    hyperparameters = data.get("task", {}).get("algorithms", [{}])[0].get("hyperparameters", {}).get("values", [])

    # Process hyperparameters
    hyperparameter_names = []
    hyperparameter_values = []
    for hp in hyperparameters:
        if "name" in hp and "value" in hp:  # Match the keys used in JSON
            hyperparameter_names.append(hp["name"])
            hyperparameter_values.append(str(hp["value"]))

    hyperparameter_name_str = ", ".join(hyperparameter_names) if hyperparameter_names else None
    hyperparameter_value_str = ", ".join(hyperparameter_values) if hyperparameter_values else None

    # Handle inference properties
    inference_props = data.get("task", {}).get("dataset", [{}])[0].get("inferenceProperties", [])

    # Process inference properties
    inference_data = []
    for props in inference_props:
        if props:  
            inference_data.append({
                "nbRequest": props.get("nbRequest"),
                "nbTokensInput": props.get("nbTokensInput"),
                "nbWordsInput": props.get("nbWordsInput"),
                "nbTokensOutput": props.get("nbTokensOutput"),
                "nbWordsOutput": props.get("nbWordsOutput"),
                "contextWindowSize": props.get("contextWindowSize"),
                "cache": props.get("cache")
            })

    nbRequest_str = ", ".join([str(p["nbRequest"]) for p in inference_data if p.get("nbRequest")]) if inference_data else None
    nbTokensInput_str = ", ".join([str(p["nbTokensInput"]) for p in inference_data if p.get("nbTokensInput")]) if inference_data else None
    nbWordsInput_str = ", ".join([str(p["nbWordsInput"]) for p in inference_data if p.get("nbWordsInput")]) if inference_data else None
    nbTokensOutput_str = ", ".join([str(p["nbTokensOutput"]) for p in inference_data if p.get("nbTokensOutput")]) if inference_data else None
    nbWordsOutput_str = ", ".join([str(p["nbWordsOutput"]) for p in inference_data if p.get("nbWordsOutput")]) if inference_data else None
    contextWindowSize_str = ", ".join([str(p["contextWindowSize"]) for p in inference_data if p.get("contextWindowSize")]) if inference_data else None
    cache_str = ", ".join([str(p["cache"]) for p in inference_data if p.get("cache")]) if inference_data else None

    # Handle components
    components = data.get("infrastructure", {}).get("components", [])
    component_data = []
    for comp in components:
        if comp:  
            component_data.append({
                "componentName": comp.get("componentName"),
                "nbComponent": comp.get("nbComponent"),
                "memorySize": comp.get("memorySize"),
                "manufacturer": comp.get("manufacturer"),
                "family": comp.get("family"),
                "series": comp.get("series"),
                "share": comp.get("share")
            })

    componentName_str = ", ".join([str(p["componentName"]) for p in component_data if p.get("componentName")]) if component_data else None
    nbComponent_str = ", ".join([str(p["nbComponent"]) for p in component_data if p.get("nbComponent")]) if component_data else None
    memorySize_str = ", ".join([str(p["memorySize"]) for p in component_data if p.get("memorySize")]) if component_data else None
    manufacturer_infra_str = ", ".join([str(p["manufacturer"]) for p in component_data if p.get("manufacturer")]) if component_data else None
    family_str = ", ".join([str(p["family"]) for p in component_data if p.get("family")]) if component_data else None
    series_str = ", ".join([str(p["series"]) for p in component_data if p.get("series")]) if component_data else None
    share_str = ", ".join([str(p["share"]) for p in component_data if p.get("share")]) if component_data else None

    return {
        # Header
        "licensing": [data["header"]["licensing"]],
        "formatVersion": [data["header"]["formatVersion"]],
        "formatVersionSpecificationUri": [data["header"]["formatVersionSpecificationUri"]],
        "reportId": [data["header"]["reportId"]],
        "reportDatetime": [data["header"]["reportDatetime"]],
        "reportStatus": [data["header"]["reportStatus"]],
        "publisher_name": [data["header"]["publisher"]["name"]],
        "publisher_division": [data["header"]["publisher"]["division"]],
        "publisher_projectName": [data["header"]["publisher"]["projectName"]],
        "publisher_confidentialityLevel": [data["header"]["publisher"]["confidentialityLevel"]],
        "publisher_publicKey": [data["header"]["publisher"]["publicKey"]],
        
        # Task
        "taskType": [data["task"]["taskType"]],
        "taskFamily": [data["task"]["taskFamily"]],
        "taskStage": [data["task"]["taskStage"]],
        "algorithmName": [data["task"]["algorithms"][0]["algorithmName"]],
        "framework": [data["task"]["algorithms"][0]["framework"]],
        "frameworkVersion": [data["task"]["algorithms"][0]["frameworkVersion"]],
        "classPath": [data["task"]["algorithms"][0]["classPath"]],
        "tuning_method": [data["task"]["algorithms"][0]["hyperparameters"]["tuning_method"]],
        "hyperparameterName": [hyperparameter_name_str],
        "hyperparameterValue": [hyperparameter_value_str],
        "quantization": [data["task"]["algorithms"][0]["quantization"]],
        "dataType": [data["task"]["dataset"][0]["dataType"]],
        "fileType": [data["task"]["dataset"][0]["fileType"]],
        "volume": [data["task"]["dataset"][0]["volume"]],
        "volumeUnit": [data["task"]["dataset"][0]["volumeUnit"]],
        "items": [data["task"]["dataset"][0]["items"]],
        "shape_item": [data["task"]["dataset"][0]["shape"][0]["item"]],
        "nbRequest": [nbRequest_str],
        "nbTokensInput": [nbTokensInput_str],
        "nbWordsInput": [nbWordsInput_str],
        "nbTokensOutput": [nbTokensOutput_str],
        "nbWordsOutput": [nbWordsOutput_str],
        "contextWindowSize": [contextWindowSize_str],
        "cache": [cache_str],
        "source": [data["task"]["dataset"][0]["source"]],
        "sourceUri": [data["task"]["dataset"][0]["sourceUri"]],
        "owner": [data["task"]["dataset"][0]["owner"]],
        "measuredAccuracy": [data["task"]["measuredAccuracy"]],
        "estimatedAccuracy": [data["task"]["estimatedAccuracy"]],
        
        # Measures
        "measurementMethod": [data["measures"][0]["measurementMethod"]],
        "manufacturer": [data["measures"][0]["manufacturer"]],
        "version": [data["measures"][0]["version"]],
        "cpuTrackingMode": [data["measures"][0]["cpuTrackingMode"]],
        "gpuTrackingMode": [data["measures"][0]["gpuTrackingMode"]],
        "averageUtilizationCpu": [data["measures"][0]["averageUtilizationCpu"]],
        "averageUtilizationGpu": [data["measures"][0]["averageUtilizationGpu"]],
        "serverSideInference": [data["measures"][0]["serverSideInference"]],
        "unit": [data["measures"][0]["unit"]],
        "powerCalibrationMeasurement": [data["measures"][0]["powerCalibrationMeasurement"]],
        "durationCalibrationMeasurement": [data["measures"][0]["durationCalibrationMeasurement"]],
        "powerConsumption": [data["measures"][0]["powerConsumption"]],
        "measurementDuration": [data["measures"][0]["measurementDuration"]],
        "measurementDateTime": [data["measures"][0]["measurementDateTime"]],
        
        # System
        "os": [data["system"]["os"]],
        "distribution": [data["system"]["distribution"]],
        "distributionVersion": [data["system"]["distributionVersion"]],
        
        # Software
        "language": [data["software"]["language"]],
        "version_software": [data["software"]["version"]],
        
        # Infrastructure
        "infraType": [data["infrastructure"]["infraType"]],
        "cloudProvider": [data["infrastructure"]["cloudProvider"]],
        "cloudInstance": [data["infrastructure"]["cloudInstance"]],
        "componentName": [componentName_str],
        "nbComponent": [nbComponent_str],
        "memorySize": [memorySize_str],
        "manufacturer_infra": [manufacturer_infra_str],
        "family": [family_str],
        "series": [series_str],
        "share": [share_str],
        
        # Environment
        "country": [data["environment"]["country"]],
        "latitude": [data["environment"]["latitude"]],
        "longitude": [data["environment"]["longitude"]],
        "location": [data["environment"]["location"]],
        "powerSupplierType": [data["environment"]["powerSupplierType"]],
        "powerSource": [data["environment"]["powerSource"]],
        "powerSourceCarbonIntensity": [data["environment"]["powerSourceCarbonIntensity"]],
        
        # Quality
        "quality": [data["quality"]],
        
        # Hash
        "hashAlgorithm": [data["$hash"]["hashAlgorithm"]],
        "cryptographicAlgorithm": [data["$hash"]["cryptographicAlgorithm"]],
        "value": [data["$hash"]["ecryptedValue"]]
    }