File size: 8,182 Bytes
762b8c6
 
 
 
 
 
 
 
 
 
 
5dc0abf
762b8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dc0abf
 
f3a0d02
 
 
 
 
 
 
5dc0abf
 
f3a0d02
 
5dc0abf
f3a0d02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dc0abf
 
762b8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dc0abf
762b8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dc0abf
762b8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a0d02
762b8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a0d02
762b8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import json
import tempfile
from datetime import datetime
from utils.validation import validate_obligatory_fields

def generate_json(
    # Header
    licensing, formatVersion, formatVersionSpecificationUri, reportId, reportDatetime, reportStatus,
    publisher_name, publisher_division, publisher_projectName, publisher_confidentialityLevel, publisher_publicKey,
    # Task
    taskType, taskFamily, taskStage, algorithmName, framework, frameworkVersion, classPath, tuning_method,
    hyperparameter_names, hyperparameter_values, quantization, dataType, fileType, volume, volumeUnit, items,
    shape_item, nbRequest, nbTokensInput, nbWordsInput, nbTokensOutput, nbWordsOutput, contextWindowSize, cache,
    source, sourceUri, owner, measuredAccuracy, estimatedAccuracy,
    # Measures
    measurementMethod, manufacturer, version, cpuTrackingMode, gpuTrackingMode, averageUtilizationCpu,
    averageUtilizationGpu, serverSideInference, unit, powerCalibrationMeasurement, durationCalibrationMeasurement,
    powerConsumption, measurementDuration, measurementDateTime,
    # System
    os, distribution, distributionVersion,
    # Software
    language, version_software,
    # Infrastructure
    infraType, cloudProvider, cloudInstance, componentName, nbComponent, memorySize, manufacturer_infra, family, series, share,
    # Environment
    country, latitude, longitude, location, powerSupplierType, powerSource, powerSourceCarbonIntensity,
    # Quality
    quality,
    # Hash
    hashAlgorithm, cryptographicAlgorithm, value_hash
):
    """Generate JSON data from form inputs."""
    # Process hyperparameters
    hyperparameters = []
    max_length = max(len(hyperparameter_names), len(hyperparameter_values))
    for i in range(max_length):
        hyperparameters.append({
            "name": hyperparameter_names[i] if i < len(hyperparameter_names) and hyperparameter_names[i] else "",
            "value": hyperparameter_values[i] if i < len(hyperparameter_values) and hyperparameter_values[i] else ""
        })
        
    # Process inference properties
    inference_props_list = []
    max_length = max(len(nbRequest), len(nbTokensInput), len(nbWordsInput), len(nbTokensOutput), len(nbWordsOutput), len(contextWindowSize), len(cache))
    for i in range(max_length):
        inference_props_list.append({
            "nbRequest": nbRequest[i] if i < len(nbRequest) and nbRequest[i] else "",
            "nbTokensInput": nbTokensInput[i] if i < len(nbTokensInput) and nbTokensInput[i] else "",
            "nbWordsInput": nbWordsInput[i] if i < len(nbWordsInput) and nbWordsInput[i] else "",
            "nbTokensOutput": nbTokensOutput[i] if i < len(nbTokensOutput) and nbTokensOutput[i] else "",
            "nbWordsOutput": nbWordsOutput[i] if i < len(nbWordsOutput) and nbWordsOutput[i] else "",
            "contextWindowSize": contextWindowSize[i] if i < len(contextWindowSize) and contextWindowSize[i] else "",
            "cache": cache[i] if i < len(cache) and cache[i] else ""
        })

    # Process components
    components_list = []
    max_length = max(len(componentName), len(nbComponent), len(memorySize), len(manufacturer_infra), len(family), len(series), len(share))
    for i in range(max_length):
        components_list.append({
            "componentName": componentName[i] if i < len(componentName) and componentName[i] else "",
            "nbComponent": nbComponent[i] if i < len(nbComponent) and nbComponent[i] else "",
            "memorySize": memorySize[i] if i < len(memorySize) and memorySize[i] else "",
            "manufacturer": manufacturer_infra[i] if i < len(manufacturer_infra) and manufacturer_infra[i] else "",
            "family": family[i] if i < len(family) and family[i] else "",
            "series": series[i] if i < len(series) and series[i] else "",
            "share": share[i] if i < len(share) and share[i] else ""
        })
    
    data = {
        "header": {
            "licensing": licensing,
            "formatVersion": formatVersion,
            "formatVersionSpecificationUri": formatVersionSpecificationUri,
            "reportId": reportId,
            "reportDatetime": reportDatetime or datetime.now().isoformat(),
            "reportStatus": reportStatus,
            "publisher": {
                "name": publisher_name,
                "division": publisher_division,
                "projectName": publisher_projectName,
                "confidentialityLevel": publisher_confidentialityLevel,
                "publicKey": publisher_publicKey
            }
        },
        "task": {
            "taskType": taskType,
            "taskFamily": taskFamily,
            "taskStage": taskStage,
            "algorithms": [
                {
                    "algorithmName": algorithmName,
                    "framework": framework,
                    "frameworkVersion": frameworkVersion,
                    "classPath": classPath,
                    "hyperparameters": {
                        "tuning_method": tuning_method,
                        "values": hyperparameters,
                    },
                    "quantization": quantization
                }
            ],
            "dataset": [
                {
                    "dataType": dataType,
                    "fileType": fileType,
                    "volume": volume,
                    "volumeUnit": volumeUnit,
                    "items": items,
                    "shape": [
                        {
                            "item": shape_item
                        }
                    ],
                    "inferenceProperties": inference_props_list,
                    "source": source,
                    "sourceUri": sourceUri,
                    "owner": owner
                }
            ],
            "measuredAccuracy": measuredAccuracy,
            "estimatedAccuracy": estimatedAccuracy
        },
        "measures": [
            {
                "measurementMethod": measurementMethod,
                "manufacturer": manufacturer,
                "version": version,
                "cpuTrackingMode": cpuTrackingMode,
                "gpuTrackingMode": gpuTrackingMode,
                "averageUtilizationCpu": averageUtilizationCpu,
                "averageUtilizationGpu": averageUtilizationGpu,
                "serverSideInference": serverSideInference,
                "unit": unit,
                "powerCalibrationMeasurement": powerCalibrationMeasurement,
                "durationCalibrationMeasurement": durationCalibrationMeasurement,
                "powerConsumption": powerConsumption,
                "measurementDuration": measurementDuration,
                "measurementDateTime": measurementDateTime
            }
        ],
        "system": {
            "os": os,
            "distribution": distribution,
            "distributionVersion": distributionVersion
        },
        "software": {
            "language": language,
            "version": version_software
        },
        "infrastructure": {
            "infraType": infraType,
            "cloudProvider": cloudProvider,
            "cloudInstance": cloudInstance,
            "components": components_list
        },
        "environment": {
            "country": country,
            "latitude": latitude,
            "longitude": longitude,
            "location": location,
            "powerSupplierType": powerSupplierType,
            "powerSource": powerSource,
            "powerSourceCarbonIntensity": powerSourceCarbonIntensity
        },
        "quality": quality,
        "$hash": {
            "hashAlgorithm": hashAlgorithm,
            "cryptographicAlgorithm": cryptographicAlgorithm,
            "ecryptedValue": value_hash
        }
    }

    # Validate obligatory fields
    is_valid, message = validate_obligatory_fields(data)
    if not is_valid:
        return message, None, ""
    
    # Create the JSON string
    json_str = json.dumps(data, indent=4)

    # Create and save the JSON file
    with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.json') as f:
        json.dump(data, f, indent=4)
        return message, f.name, json_str