|
import requests
|
|
import json
|
|
import os
|
|
import asyncio
|
|
from app.models import ChatCompletionRequest, Message
|
|
from dataclasses import dataclass
|
|
from typing import Optional, Dict, Any, List
|
|
import httpx
|
|
import logging
|
|
|
|
logger = logging.getLogger('my_logger')
|
|
|
|
|
|
@dataclass
|
|
class GeneratedText:
|
|
text: str
|
|
finish_reason: Optional[str] = None
|
|
|
|
|
|
class ResponseWrapper:
|
|
def __init__(self, data: Dict[Any, Any]):
|
|
self._data = data
|
|
self._text = self._extract_text()
|
|
self._finish_reason = self._extract_finish_reason()
|
|
self._prompt_token_count = self._extract_prompt_token_count()
|
|
self._candidates_token_count = self._extract_candidates_token_count()
|
|
self._total_token_count = self._extract_total_token_count()
|
|
self._thoughts = self._extract_thoughts()
|
|
self._json_dumps = json.dumps(self._data, indent=4, ensure_ascii=False)
|
|
|
|
def _extract_thoughts(self) -> Optional[str]:
|
|
try:
|
|
for part in self._data['candidates'][0]['content']['parts']:
|
|
if 'thought' in part:
|
|
return part['text']
|
|
return ""
|
|
except (KeyError, IndexError):
|
|
return ""
|
|
|
|
def _extract_text(self) -> str:
|
|
try:
|
|
for part in self._data['candidates'][0]['content']['parts']:
|
|
if 'thought' not in part:
|
|
return part['text']
|
|
return ""
|
|
except (KeyError, IndexError):
|
|
return ""
|
|
|
|
def _extract_finish_reason(self) -> Optional[str]:
|
|
try:
|
|
return self._data['candidates'][0].get('finishReason')
|
|
except (KeyError, IndexError):
|
|
return None
|
|
|
|
def _extract_prompt_token_count(self) -> Optional[int]:
|
|
try:
|
|
return self._data['usageMetadata'].get('promptTokenCount')
|
|
except (KeyError):
|
|
return None
|
|
|
|
def _extract_candidates_token_count(self) -> Optional[int]:
|
|
try:
|
|
return self._data['usageMetadata'].get('candidatesTokenCount')
|
|
except (KeyError):
|
|
return None
|
|
|
|
def _extract_total_token_count(self) -> Optional[int]:
|
|
try:
|
|
return self._data['usageMetadata'].get('totalTokenCount')
|
|
except (KeyError):
|
|
return None
|
|
|
|
@property
|
|
def text(self) -> str:
|
|
return self._text
|
|
|
|
@property
|
|
def finish_reason(self) -> Optional[str]:
|
|
return self._finish_reason
|
|
|
|
@property
|
|
def prompt_token_count(self) -> Optional[int]:
|
|
return self._prompt_token_count
|
|
|
|
@property
|
|
def candidates_token_count(self) -> Optional[int]:
|
|
return self._candidates_token_count
|
|
|
|
@property
|
|
def total_token_count(self) -> Optional[int]:
|
|
return self._total_token_count
|
|
|
|
@property
|
|
def thoughts(self) -> Optional[str]:
|
|
return self._thoughts
|
|
|
|
@property
|
|
def json_dumps(self) -> str:
|
|
return self._json_dumps
|
|
|
|
|
|
class GeminiClient:
|
|
|
|
AVAILABLE_MODELS = []
|
|
EXTRA_MODELS = os.environ.get("EXTRA_MODELS", "").split(",")
|
|
|
|
def __init__(self, api_key: str):
|
|
self.api_key = api_key
|
|
|
|
async def stream_chat(self, request: ChatCompletionRequest, contents, safety_settings, system_instruction):
|
|
logger.info("流式开始 →")
|
|
api_version = "v1alpha" if "think" in request.model else "v1beta"
|
|
url = f"https://generativelanguage.googleapis.com/{api_version}/models/{request.model}:streamGenerateContent?key={self.api_key}&alt=sse"
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
}
|
|
data = {
|
|
"contents": contents,
|
|
"generationConfig": {
|
|
"temperature": request.temperature,
|
|
"maxOutputTokens": request.max_tokens,
|
|
},
|
|
"safetySettings": safety_settings,
|
|
}
|
|
if system_instruction:
|
|
data["system_instruction"] = system_instruction
|
|
|
|
async with httpx.AsyncClient() as client:
|
|
async with client.stream("POST", url, headers=headers, json=data, timeout=600) as response:
|
|
buffer = b""
|
|
try:
|
|
async for line in response.aiter_lines():
|
|
if not line.strip():
|
|
continue
|
|
if line.startswith("data: "):
|
|
line = line[len("data: "):]
|
|
buffer += line.encode('utf-8')
|
|
try:
|
|
data = json.loads(buffer.decode('utf-8'))
|
|
buffer = b""
|
|
if 'candidates' in data and data['candidates']:
|
|
candidate = data['candidates'][0]
|
|
if 'content' in candidate:
|
|
content = candidate['content']
|
|
if 'parts' in content and content['parts']:
|
|
parts = content['parts']
|
|
text = ""
|
|
for part in parts:
|
|
if 'text' in part:
|
|
text += part['text']
|
|
if text:
|
|
yield text
|
|
|
|
if candidate.get("finishReason") and candidate.get("finishReason") != "STOP":
|
|
|
|
raise ValueError(f"模型的响应被截断: {candidate.get('finishReason')}")
|
|
|
|
if 'safetyRatings' in candidate:
|
|
for rating in candidate['safetyRatings']:
|
|
if rating['probability'] == 'HIGH':
|
|
|
|
raise ValueError(f"模型的响应被截断: {rating['category']}")
|
|
except json.JSONDecodeError:
|
|
|
|
continue
|
|
except Exception as e:
|
|
|
|
raise e
|
|
except Exception as e:
|
|
|
|
raise e
|
|
finally:
|
|
logger.info("流式结束 ←")
|
|
|
|
|
|
def complete_chat(self, request: ChatCompletionRequest, contents, safety_settings, system_instruction):
|
|
api_version = "v1alpha" if "think" in request.model else "v1beta"
|
|
url = f"https://generativelanguage.googleapis.com/{api_version}/models/{request.model}:generateContent?key={self.api_key}"
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
}
|
|
data = {
|
|
"contents": contents,
|
|
"generationConfig": {
|
|
"temperature": request.temperature,
|
|
"maxOutputTokens": request.max_tokens,
|
|
},
|
|
"safetySettings": safety_settings,
|
|
}
|
|
if system_instruction:
|
|
data["system_instruction"] = system_instruction
|
|
response = requests.post(url, headers=headers, json=data)
|
|
response.raise_for_status()
|
|
return ResponseWrapper(response.json())
|
|
|
|
def convert_messages(self, messages, use_system_prompt=False):
|
|
gemini_history = []
|
|
errors = []
|
|
system_instruction_text = ""
|
|
is_system_phase = use_system_prompt
|
|
for i, message in enumerate(messages):
|
|
role = message.role
|
|
content = message.content
|
|
|
|
if isinstance(content, str):
|
|
if is_system_phase and role == 'system':
|
|
if system_instruction_text:
|
|
system_instruction_text += "\n" + content
|
|
else:
|
|
system_instruction_text = content
|
|
else:
|
|
is_system_phase = False
|
|
|
|
if role in ['user', 'system']:
|
|
role_to_use = 'user'
|
|
elif role == 'assistant':
|
|
role_to_use = 'model'
|
|
else:
|
|
errors.append(f"Invalid role: {role}")
|
|
continue
|
|
|
|
if gemini_history and gemini_history[-1]['role'] == role_to_use:
|
|
gemini_history[-1]['parts'].append({"text": content})
|
|
else:
|
|
gemini_history.append(
|
|
{"role": role_to_use, "parts": [{"text": content}]})
|
|
elif isinstance(content, list):
|
|
parts = []
|
|
for item in content:
|
|
if item.get('type') == 'text':
|
|
parts.append({"text": item.get('text')})
|
|
elif item.get('type') == 'image_url':
|
|
image_data = item.get('image_url', {}).get('url', '')
|
|
if image_data.startswith('data:image/'):
|
|
try:
|
|
mime_type, base64_data = image_data.split(';')[0].split(':')[1], image_data.split(',')[1]
|
|
parts.append({
|
|
"inline_data": {
|
|
"mime_type": mime_type,
|
|
"data": base64_data
|
|
}
|
|
})
|
|
except (IndexError, ValueError):
|
|
errors.append(
|
|
f"Invalid data URI for image: {image_data}")
|
|
else:
|
|
errors.append(
|
|
f"Invalid image URL format for item: {item}")
|
|
|
|
if parts:
|
|
if role in ['user', 'system']:
|
|
role_to_use = 'user'
|
|
elif role == 'assistant':
|
|
role_to_use = 'model'
|
|
else:
|
|
errors.append(f"Invalid role: {role}")
|
|
continue
|
|
if gemini_history and gemini_history[-1]['role'] == role_to_use:
|
|
gemini_history[-1]['parts'].extend(parts)
|
|
else:
|
|
gemini_history.append(
|
|
{"role": role_to_use, "parts": parts})
|
|
if errors:
|
|
return errors
|
|
else:
|
|
return gemini_history, {"parts": [{"text": system_instruction_text}]}
|
|
|
|
@staticmethod
|
|
async def list_available_models(api_key) -> list:
|
|
url = "https://generativelanguage.googleapis.com/v1beta/models?key={}".format(
|
|
api_key)
|
|
async with httpx.AsyncClient() as client:
|
|
response = await client.get(url)
|
|
response.raise_for_status()
|
|
data = response.json()
|
|
models = [model["name"] for model in data.get("models", [])]
|
|
models.extend(GeminiClient.EXTRA_MODELS)
|
|
return models
|
|
|