gemini / app /gemini.py
FISHYA's picture
Upload 12 files
c30e73c verified
import requests
import json
import os
import asyncio
from app.models import ChatCompletionRequest, Message # 相对导入
from dataclasses import dataclass
from typing import Optional, Dict, Any, List
import httpx
import logging
logger = logging.getLogger('my_logger')
@dataclass
class GeneratedText:
text: str
finish_reason: Optional[str] = None
class ResponseWrapper:
def __init__(self, data: Dict[Any, Any]): # 正确的初始化方法名
self._data = data
self._text = self._extract_text()
self._finish_reason = self._extract_finish_reason()
self._prompt_token_count = self._extract_prompt_token_count()
self._candidates_token_count = self._extract_candidates_token_count()
self._total_token_count = self._extract_total_token_count()
self._thoughts = self._extract_thoughts()
self._json_dumps = json.dumps(self._data, indent=4, ensure_ascii=False)
def _extract_thoughts(self) -> Optional[str]:
try:
for part in self._data['candidates'][0]['content']['parts']:
if 'thought' in part:
return part['text']
return ""
except (KeyError, IndexError):
return ""
def _extract_text(self) -> str:
try:
for part in self._data['candidates'][0]['content']['parts']:
if 'thought' not in part:
return part['text']
return ""
except (KeyError, IndexError):
return ""
def _extract_finish_reason(self) -> Optional[str]:
try:
return self._data['candidates'][0].get('finishReason')
except (KeyError, IndexError):
return None
def _extract_prompt_token_count(self) -> Optional[int]:
try:
return self._data['usageMetadata'].get('promptTokenCount')
except (KeyError):
return None
def _extract_candidates_token_count(self) -> Optional[int]:
try:
return self._data['usageMetadata'].get('candidatesTokenCount')
except (KeyError):
return None
def _extract_total_token_count(self) -> Optional[int]:
try:
return self._data['usageMetadata'].get('totalTokenCount')
except (KeyError):
return None
@property
def text(self) -> str:
return self._text
@property
def finish_reason(self) -> Optional[str]:
return self._finish_reason
@property
def prompt_token_count(self) -> Optional[int]:
return self._prompt_token_count
@property
def candidates_token_count(self) -> Optional[int]:
return self._candidates_token_count
@property
def total_token_count(self) -> Optional[int]:
return self._total_token_count
@property
def thoughts(self) -> Optional[str]:
return self._thoughts
@property
def json_dumps(self) -> str:
return self._json_dumps
class GeminiClient:
AVAILABLE_MODELS = []
EXTRA_MODELS = os.environ.get("EXTRA_MODELS", "").split(",")
def __init__(self, api_key: str):
self.api_key = api_key
async def stream_chat(self, request: ChatCompletionRequest, contents, safety_settings, system_instruction):
logger.info("流式开始 →")
api_version = "v1alpha" if "think" in request.model else "v1beta"
url = f"https://generativelanguage.googleapis.com/{api_version}/models/{request.model}:streamGenerateContent?key={self.api_key}&alt=sse"
headers = {
"Content-Type": "application/json",
}
data = {
"contents": contents,
"generationConfig": {
"temperature": request.temperature,
"maxOutputTokens": request.max_tokens,
},
"safetySettings": safety_settings,
}
if system_instruction:
data["system_instruction"] = system_instruction
async with httpx.AsyncClient() as client:
async with client.stream("POST", url, headers=headers, json=data, timeout=600) as response:
buffer = b""
try:
async for line in response.aiter_lines():
if not line.strip():
continue
if line.startswith("data: "):
line = line[len("data: "):]
buffer += line.encode('utf-8')
try:
data = json.loads(buffer.decode('utf-8'))
buffer = b""
if 'candidates' in data and data['candidates']:
candidate = data['candidates'][0]
if 'content' in candidate:
content = candidate['content']
if 'parts' in content and content['parts']:
parts = content['parts']
text = ""
for part in parts:
if 'text' in part:
text += part['text']
if text:
yield text
if candidate.get("finishReason") and candidate.get("finishReason") != "STOP":
# logger.warning(f"模型的响应因违反内容政策而被标记: {candidate.get('finishReason')}")
raise ValueError(f"模型的响应被截断: {candidate.get('finishReason')}")
if 'safetyRatings' in candidate:
for rating in candidate['safetyRatings']:
if rating['probability'] == 'HIGH':
# logger.warning(f"模型的响应因高概率被标记为 {rating['category']}")
raise ValueError(f"模型的响应被截断: {rating['category']}")
except json.JSONDecodeError:
# logger.debug(f"JSON解析错误, 当前缓冲区内容: {buffer}")
continue
except Exception as e:
# logger.error(f"流式处理期间发生错误: {e}")
raise e
except Exception as e:
# logger.error(f"流式处理错误: {e}")
raise e
finally:
logger.info("流式结束 ←")
def complete_chat(self, request: ChatCompletionRequest, contents, safety_settings, system_instruction):
api_version = "v1alpha" if "think" in request.model else "v1beta"
url = f"https://generativelanguage.googleapis.com/{api_version}/models/{request.model}:generateContent?key={self.api_key}"
headers = {
"Content-Type": "application/json",
}
data = {
"contents": contents,
"generationConfig": {
"temperature": request.temperature,
"maxOutputTokens": request.max_tokens,
},
"safetySettings": safety_settings,
}
if system_instruction:
data["system_instruction"] = system_instruction
response = requests.post(url, headers=headers, json=data)
response.raise_for_status()
return ResponseWrapper(response.json())
def convert_messages(self, messages, use_system_prompt=False):
gemini_history = []
errors = []
system_instruction_text = ""
is_system_phase = use_system_prompt
for i, message in enumerate(messages):
role = message.role
content = message.content
if isinstance(content, str):
if is_system_phase and role == 'system':
if system_instruction_text:
system_instruction_text += "\n" + content
else:
system_instruction_text = content
else:
is_system_phase = False
if role in ['user', 'system']:
role_to_use = 'user'
elif role == 'assistant':
role_to_use = 'model'
else:
errors.append(f"Invalid role: {role}")
continue
if gemini_history and gemini_history[-1]['role'] == role_to_use:
gemini_history[-1]['parts'].append({"text": content})
else:
gemini_history.append(
{"role": role_to_use, "parts": [{"text": content}]})
elif isinstance(content, list):
parts = []
for item in content:
if item.get('type') == 'text':
parts.append({"text": item.get('text')})
elif item.get('type') == 'image_url':
image_data = item.get('image_url', {}).get('url', '')
if image_data.startswith('data:image/'):
try:
mime_type, base64_data = image_data.split(';')[0].split(':')[1], image_data.split(',')[1]
parts.append({
"inline_data": {
"mime_type": mime_type,
"data": base64_data
}
})
except (IndexError, ValueError):
errors.append(
f"Invalid data URI for image: {image_data}")
else:
errors.append(
f"Invalid image URL format for item: {item}")
if parts:
if role in ['user', 'system']:
role_to_use = 'user'
elif role == 'assistant':
role_to_use = 'model'
else:
errors.append(f"Invalid role: {role}")
continue
if gemini_history and gemini_history[-1]['role'] == role_to_use:
gemini_history[-1]['parts'].extend(parts)
else:
gemini_history.append(
{"role": role_to_use, "parts": parts})
if errors:
return errors
else:
return gemini_history, {"parts": [{"text": system_instruction_text}]}
@staticmethod
async def list_available_models(api_key) -> list:
url = "https://generativelanguage.googleapis.com/v1beta/models?key={}".format(
api_key)
async with httpx.AsyncClient() as client:
response = await client.get(url)
response.raise_for_status()
data = response.json()
models = [model["name"] for model in data.get("models", [])]
models.extend(GeminiClient.EXTRA_MODELS)
return models