File size: 6,269 Bytes
c58b8e9
 
 
0721572
 
 
0ce5e68
0721572
 
 
0ce5e68
a4d8500
 
0ce5e68
 
 
0721572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47ee628
 
0721572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import copy
import llama_cpp
import gradio as gr
from llama_cpp import Llama
import datetime
from huggingface_hub import hf_hub_download  

#MODEL SETTINGS also for DISPLAY
convHistory = ''
modelfile = hf_hub_download(
        repo_id=os.environ.get("REPO_ID", "TheBloke/Starling-LM-7B-alpha-GGUF"),
        filename=os.environ.get("MODEL_FILE", "starling-lm-7b-alpha.Q4_K_M.gguf"),
    )

#"https://huggingface.co/TheBloke/Starling-LM-7B-alpha-GGUF/blob/main/starling-lm-7b-alpha.Q4_K_M.gguf"
repetitionpenalty = 1.15
contextlength=8192
logfile = 'StarlingLM7B_logs.txt'
print("loading model...")
stt = datetime.datetime.now()
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = Llama(
  model_path=modelfile,  # Download the model file first
  n_ctx=contextlength,  # The max sequence length to use - note that longer sequence lengths require much more resources
  #n_threads=2,            # The number of CPU threads to use, tailor to your system and the resulting performance
)
dt = datetime.datetime.now() - stt
print(f"Model loaded in {dt}")

def writehistory(text):
    with open(logfile, 'a') as f:
        f.write(text)
        f.write('\n')
    f.close()

"""
gr.themes.Base()
gr.themes.Default()
gr.themes.Glass()
gr.themes.Monochrome()
gr.themes.Soft()
"""
def combine(a, b, c, d,e,f):
    global convHistory
    import datetime
    SYSTEM_PROMPT = f"""{a}


    """ 
    # parameters here: https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama.__call__       
    temperature = c
    max_new_tokens = d
    repeat_penalty = f
    top_p = e
    prompt = f"GPT4 User: {b}<|end_of_turn|>GPT4 Assistant:"
    start = datetime.datetime.now()
    generation = ""
    delta = ""
    prompt_tokens = f"Prompt Tokens: {len(llm.tokenize(bytes(prompt,encoding='utf-8')))}"
    generated_text = ""
    answer_tokens = ''
    total_tokens = ''   
    for character in llm(prompt, 
                max_tokens=max_new_tokens, 
                stop=["</s>"],
                temperature = temperature,
                repeat_penalty = repeat_penalty,
                top_p = top_p,   # Example stop token - not necessarily correct for this specific model! Please check before using.
                echo=False, 
                stream=True):
        generation += character["choices"][0]["text"]

        answer_tokens = f"Out Tkns: {len(llm.tokenize(bytes(generation,encoding='utf-8')))}"
        total_tokens = f"Total Tkns: {len(llm.tokenize(bytes(prompt,encoding='utf-8'))) + len(llm.tokenize(bytes(generation,encoding='utf-8')))}"
        delta = datetime.datetime.now() - start
        yield generation, delta, prompt_tokens, answer_tokens, total_tokens
    timestamp = datetime.datetime.now()
    logger = f"""time: {timestamp}\n Temp: {temperature} - MaxNewTokens: {max_new_tokens} - RepPenalty: 1.5 \nPROMPT: \n{prompt}\nClaude2Alpaca-7B: {generation}\nGenerated in {delta}\nPromptTokens: {prompt_tokens}   Output Tokens: {answer_tokens}  Total Tokens: {total_tokens}\n\n---\n\n"""
    writehistory(logger)
    convHistory = convHistory + prompt + "\n" + generation + "\n"
    print(convHistory)
    return generation, delta, prompt_tokens, answer_tokens, total_tokens    
    #return generation, delta


# MAIN GRADIO INTERFACE
with gr.Blocks(theme='WeixuanYuan/Soft_dark') as demo:   #theme=gr.themes.Glass()  #theme='remilia/Ghostly'
    #TITLE SECTION
    with gr.Row(variant='compact'):
            with gr.Column(scale=12):
                gr.HTML("<center>"
                + "<h3>Prompt Engineering Playground!</h3>"
                + "<h1>🐦 StarlingLM-7b 8K context window</h2></center>")  
            gr.Image(value='https://starling.cs.berkeley.edu/starling.png', height=95, show_label = False, 
                     show_download_button = False, container = False)    
    # INTERACTIVE INFOGRAPHIC SECTION
    with gr.Row():
        with gr.Column(min_width=80):
            gentime = gr.Textbox(value="", placeholder="Generation Time:", min_width=50, show_label=False)                          
        with gr.Column(min_width=80):
            prompttokens = gr.Textbox(value="", placeholder="Prompt Tkn:", min_width=50, show_label=False)
        with gr.Column(min_width=80):
            outputokens = gr.Textbox(value="", placeholder="Output Tkn:", min_width=50, show_label=False)            
        with gr.Column(min_width=80):
            totaltokens = gr.Textbox(value="", placeholder="Total Tokens:", min_width=50, show_label=False)  

    # PLAYGROUND INTERFACE SECTION
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown(
            f"""
            ### Tunning Parameters""")
            temp = gr.Slider(label="Temperature",minimum=0.0, maximum=1.0, step=0.01, value=0.42)
            top_p = gr.Slider(label="Top_P",minimum=0.0, maximum=1.0, step=0.01, value=0.8)
            repPen = gr.Slider(label="Repetition Penalty",minimum=0.0, maximum=4.0, step=0.01, value=1.2)
            max_len = gr.Slider(label="Maximum output lenght", minimum=10,maximum=7000,step=2, value=900)
            gr.Markdown(
            """
            Fill the System Prompt and User Prompt
            And then click the Button below
            """)
            btn = gr.Button(value="🐦 Generate", variant='primary')
            gr.Markdown(
            f"""
            - **Prompt Template**: OpenChat 🐦
            - **Repetition Penalty**: {repetitionpenalty}
            - **Context Lenght**: {contextlength} tokens
            - **LLM Engine**: CTransformers
            - **Model**: 🐦 StarlingLM-7b
            - **Log File**: {logfile}
            """) 


        with gr.Column(scale=4):
            txt = gr.Textbox(label="System Prompt", value = "", placeholder = "This models does not have any System prompt...",lines=1, interactive = False)
            txt_2 = gr.Textbox(label="User Prompt", lines=6)
            txt_3 = gr.Textbox(value="", label="Output", lines = 13, show_copy_button=True)
            btn.click(combine, inputs=[txt, txt_2,temp,max_len,top_p,repPen], outputs=[txt_3,gentime,prompttokens,outputokens,totaltokens])


if __name__ == "__main__":
    demo.launch(inbrowser=True)