Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,45 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from huggingface_hub import hf_hub_download
|
3 |
-
from llama_cpp import Llama
|
4 |
-
|
5 |
-
# download model
|
6 |
-
model_name_or_path = "FabioSantos/llama3Finetune_unsloth" # repo id
|
7 |
-
# 4bit
|
8 |
-
model_basename = "llama3Finetune_unsloth-unsloth.Q8_0.gguf" # file name
|
9 |
-
|
10 |
-
model_path = hf_hub_download(repo_id=model_name_or_path, filename=model_basename)
|
11 |
-
print(model_path)
|
12 |
-
|
13 |
-
lcpp_llm = Llama(
|
14 |
-
model_path=model_path,
|
15 |
-
n_threads=2, # CPU cores
|
16 |
-
n_batch=512, # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.
|
17 |
-
n_gpu_layers=43, # Change this value based on your model and your GPU VRAM pool.
|
18 |
-
n_ctx=4096, # Context window
|
19 |
-
)
|
20 |
-
|
21 |
-
prompt_template = "Responda as questões.\nHuman: {prompt}\nAssistant:\n"
|
22 |
-
|
23 |
-
def get_response(text):
|
24 |
-
prompt = prompt_template.format(prompt=text)
|
25 |
-
response = lcpp_llm(
|
26 |
-
prompt=prompt,
|
27 |
-
max_tokens=256,
|
28 |
-
temperature=0.5,
|
29 |
-
top_p=0.95,
|
30 |
-
top_k=50,
|
31 |
-
stop=[''], # Dynamic stopping when such token is detected.
|
32 |
-
echo=True # return the prompt
|
33 |
-
)
|
34 |
-
return response
|
35 |
-
|
36 |
-
interface = gr.Interface(
|
37 |
-
fn=get_response,
|
38 |
-
inputs="text",
|
39 |
-
outputs="text",
|
40 |
-
title="Assistente Virtual",
|
41 |
-
description="Forneça uma questão e visualize a resposta do assistente."
|
42 |
-
)
|
43 |
-
|
44 |
-
if __name__ == "__main__":
|
45 |
-
interface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import hf_hub_download
|
3 |
+
from llama_cpp import Llama
|
4 |
+
|
5 |
+
# download model
|
6 |
+
model_name_or_path = "FabioSantos/llama3Finetune_unsloth" # repo id
|
7 |
+
# 4bit
|
8 |
+
model_basename = "llama3Finetune_unsloth-unsloth.Q8_0.gguf" # file name
|
9 |
+
|
10 |
+
model_path = hf_hub_download(repo_id=model_name_or_path, filename=model_basename)
|
11 |
+
print(model_path)
|
12 |
+
|
13 |
+
lcpp_llm = Llama(
|
14 |
+
model_path=model_path,
|
15 |
+
n_threads=2, # CPU cores
|
16 |
+
n_batch=512, # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.
|
17 |
+
n_gpu_layers=43, # Change this value based on your model and your GPU VRAM pool.
|
18 |
+
n_ctx=4096, # Context window
|
19 |
+
)
|
20 |
+
|
21 |
+
prompt_template = "Responda as questões.\nHuman: {prompt}\nAssistant:\n"
|
22 |
+
|
23 |
+
def get_response(text):
|
24 |
+
prompt = prompt_template.format(prompt=text)
|
25 |
+
response = lcpp_llm(
|
26 |
+
prompt=prompt,
|
27 |
+
max_tokens=256,
|
28 |
+
temperature=0.5,
|
29 |
+
top_p=0.95,
|
30 |
+
top_k=50,
|
31 |
+
stop=[''], # Dynamic stopping when such token is detected.
|
32 |
+
echo=True # return the prompt
|
33 |
+
)
|
34 |
+
return response
|
35 |
+
|
36 |
+
interface = gr.Interface(
|
37 |
+
fn=get_response,
|
38 |
+
inputs="text",
|
39 |
+
outputs="text",
|
40 |
+
title="Assistente Virtual",
|
41 |
+
description="Forneça uma questão e visualize a resposta do assistente."
|
42 |
+
)
|
43 |
+
|
44 |
+
if __name__ == "__main__":
|
45 |
+
interface.launch()
|