File size: 4,692 Bytes
08f0ba3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import math
import torch
import torch.nn as nn
from einops import rearrange, repeat

from ..utils.helpers import to_2tuple


class PatchEmbed(nn.Module):
    """2D Image to Patch Embedding

    Image to Patch Embedding using Conv2d

    A convolution based approach to patchifying a 2D image w/ embedding projection.

    Based on the impl in https://github.com/google-research/vision_transformer

    Hacked together by / Copyright 2020 Ross Wightman

    Remove the _assert function in forward function to be compatible with multi-resolution images.
    """

    def __init__(
        self,
        patch_size=16,
        in_chans=3,
        embed_dim=768,
        norm_layer=None,
        flatten=True,
        bias=True,
        dtype=None,
        device=None,
    ):
        factory_kwargs = {"dtype": dtype, "device": device}
        super().__init__()
        patch_size = to_2tuple(patch_size)
        self.patch_size = patch_size
        self.flatten = flatten

        self.proj = nn.Conv3d(
            in_chans,
            embed_dim,
            kernel_size=patch_size,
            stride=patch_size,
            bias=bias,
            **factory_kwargs
        )
        nn.init.xavier_uniform_(self.proj.weight.view(self.proj.weight.size(0), -1))
        if bias:
            nn.init.zeros_(self.proj.bias)

        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        x = self.proj(x)
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # BCHW -> BNC
        x = self.norm(x)
        return x


class TextProjection(nn.Module):
    """
    Projects text embeddings. Also handles dropout for classifier-free guidance.

    Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
    """

    def __init__(self, in_channels, hidden_size, act_layer, dtype=None, device=None):
        factory_kwargs = {"dtype": dtype, "device": device}
        super().__init__()
        self.linear_1 = nn.Linear(
            in_features=in_channels,
            out_features=hidden_size,
            bias=True,
            **factory_kwargs
        )
        self.act_1 = act_layer()
        self.linear_2 = nn.Linear(
            in_features=hidden_size,
            out_features=hidden_size,
            bias=True,
            **factory_kwargs
        )

    def forward(self, caption):
        hidden_states = self.linear_1(caption)
        hidden_states = self.act_1(hidden_states)
        hidden_states = self.linear_2(hidden_states)
        return hidden_states


def timestep_embedding(t, dim, max_period=10000):
    """
    Create sinusoidal timestep embeddings.

    Args:
        t (torch.Tensor): a 1-D Tensor of N indices, one per batch element. These may be fractional.
        dim (int): the dimension of the output.
        max_period (int): controls the minimum frequency of the embeddings.

    Returns:
        embedding (torch.Tensor): An (N, D) Tensor of positional embeddings.

    .. ref_link: https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
    """
    half = dim // 2
    freqs = torch.exp(
        -math.log(max_period)
        * torch.arange(start=0, end=half, dtype=torch.float32)
        / half
    ).to(device=t.device)
    args = t[:, None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    return embedding


class TimestepEmbedder(nn.Module):
    """
    Embeds scalar timesteps into vector representations.
    """

    def __init__(
        self,
        hidden_size,
        act_layer,
        frequency_embedding_size=256,
        max_period=10000,
        out_size=None,
        dtype=None,
        device=None,
    ):
        factory_kwargs = {"dtype": dtype, "device": device}
        super().__init__()
        self.frequency_embedding_size = frequency_embedding_size
        self.max_period = max_period
        if out_size is None:
            out_size = hidden_size

        self.mlp = nn.Sequential(
            nn.Linear(
                frequency_embedding_size, hidden_size, bias=True, **factory_kwargs
            ),
            act_layer(),
            nn.Linear(hidden_size, out_size, bias=True, **factory_kwargs),
        )
        nn.init.normal_(self.mlp[0].weight, std=0.02)
        nn.init.normal_(self.mlp[2].weight, std=0.02)

    def forward(self, t):
        t_freq = timestep_embedding(
            t, self.frequency_embedding_size, self.max_period
        ).type(self.mlp[0].weight.dtype)
        t_emb = self.mlp(t_freq)
        return t_emb