|
|
|
"""This file holding some environment constant for sharing by other files.""" |
|
import os |
|
import os.path as osp |
|
import subprocess |
|
import sys |
|
from collections import OrderedDict, defaultdict |
|
|
|
import numpy as np |
|
import torch |
|
|
|
|
|
def is_rocm_pytorch() -> bool: |
|
"""Check whether the PyTorch is compiled on ROCm.""" |
|
is_rocm = False |
|
if TORCH_VERSION != 'parrots': |
|
try: |
|
from torch.utils.cpp_extension import ROCM_HOME |
|
is_rocm = True if ((torch.version.hip is not None) and |
|
(ROCM_HOME is not None)) else False |
|
except ImportError: |
|
pass |
|
return is_rocm |
|
|
|
TORCH_VERSION = torch.__version__ |
|
|
|
def get_build_config(): |
|
"""Obtain the build information of PyTorch or Parrots.""" |
|
if TORCH_VERSION == 'parrots': |
|
from parrots.config import get_build_info |
|
return get_build_info() |
|
else: |
|
return torch.__config__.show() |
|
|
|
try: |
|
import torch_musa |
|
IS_MUSA_AVAILABLE = True |
|
except Exception: |
|
IS_MUSA_AVAILABLE = False |
|
|
|
def is_musa_available() -> bool: |
|
return IS_MUSA_AVAILABLE |
|
|
|
def is_cuda_available() -> bool: |
|
"""Returns True if cuda devices exist.""" |
|
return torch.cuda.is_available() |
|
|
|
def _get_cuda_home(): |
|
if TORCH_VERSION == 'parrots': |
|
from parrots.utils.build_extension import CUDA_HOME |
|
else: |
|
if is_rocm_pytorch(): |
|
from torch.utils.cpp_extension import ROCM_HOME |
|
CUDA_HOME = ROCM_HOME |
|
else: |
|
from torch.utils.cpp_extension import CUDA_HOME |
|
return CUDA_HOME |
|
|
|
|
|
def _get_musa_home(): |
|
return os.environ.get('MUSA_HOME') |
|
|
|
|
|
def collect_env(): |
|
"""Collect the information of the running environments. |
|
|
|
Returns: |
|
dict: The environment information. The following fields are contained. |
|
|
|
- sys.platform: The variable of ``sys.platform``. |
|
- Python: Python version. |
|
- CUDA available: Bool, indicating if CUDA is available. |
|
- GPU devices: Device type of each GPU. |
|
- CUDA_HOME (optional): The env var ``CUDA_HOME``. |
|
- NVCC (optional): NVCC version. |
|
- GCC: GCC version, "n/a" if GCC is not installed. |
|
- MSVC: Microsoft Virtual C++ Compiler version, Windows only. |
|
- PyTorch: PyTorch version. |
|
- PyTorch compiling details: The output of \ |
|
``torch.__config__.show()``. |
|
- TorchVision (optional): TorchVision version. |
|
- OpenCV (optional): OpenCV version. |
|
""" |
|
from distutils import errors |
|
|
|
env_info = OrderedDict() |
|
env_info['sys.platform'] = sys.platform |
|
env_info['Python'] = sys.version.replace('\n', '') |
|
|
|
cuda_available = is_cuda_available() |
|
musa_available = is_musa_available() |
|
env_info['CUDA available'] = cuda_available |
|
env_info['MUSA available'] = musa_available |
|
env_info['numpy_random_seed'] = np.random.get_state()[1][0] |
|
|
|
if cuda_available: |
|
devices = defaultdict(list) |
|
for k in range(torch.cuda.device_count()): |
|
devices[torch.cuda.get_device_name(k)].append(str(k)) |
|
for name, device_ids in devices.items(): |
|
env_info['GPU ' + ','.join(device_ids)] = name |
|
|
|
CUDA_HOME = _get_cuda_home() |
|
env_info['CUDA_HOME'] = CUDA_HOME |
|
|
|
if CUDA_HOME is not None and osp.isdir(CUDA_HOME): |
|
if CUDA_HOME == '/opt/rocm': |
|
try: |
|
nvcc = osp.join(CUDA_HOME, 'hip/bin/hipcc') |
|
nvcc = subprocess.check_output( |
|
f'"{nvcc}" --version', shell=True) |
|
nvcc = nvcc.decode('utf-8').strip() |
|
release = nvcc.rfind('HIP version:') |
|
build = nvcc.rfind('') |
|
nvcc = nvcc[release:build].strip() |
|
except subprocess.SubprocessError: |
|
nvcc = 'Not Available' |
|
else: |
|
try: |
|
nvcc = osp.join(CUDA_HOME, 'bin/nvcc') |
|
nvcc = subprocess.check_output(f'"{nvcc}" -V', shell=True) |
|
nvcc = nvcc.decode('utf-8').strip() |
|
release = nvcc.rfind('Cuda compilation tools') |
|
build = nvcc.rfind('Build ') |
|
nvcc = nvcc[release:build].strip() |
|
except subprocess.SubprocessError: |
|
nvcc = 'Not Available' |
|
env_info['NVCC'] = nvcc |
|
elif musa_available: |
|
devices = defaultdict(list) |
|
for k in range(torch.musa.device_count()): |
|
devices[torch.musa.get_device_name(k)].append(str(k)) |
|
for name, device_ids in devices.items(): |
|
env_info['GPU ' + ','.join(device_ids)] = name |
|
|
|
MUSA_HOME = _get_musa_home() |
|
env_info['MUSA_HOME'] = MUSA_HOME |
|
|
|
if MUSA_HOME is not None and osp.isdir(MUSA_HOME): |
|
try: |
|
mcc = osp.join(MUSA_HOME, 'bin/mcc') |
|
subprocess.check_output(f'"{mcc}" -v', shell=True) |
|
except subprocess.SubprocessError: |
|
mcc = 'Not Available' |
|
env_info['mcc'] = mcc |
|
try: |
|
|
|
|
|
|
|
import io |
|
import sysconfig |
|
cc = sysconfig.get_config_var('CC') |
|
if cc: |
|
cc = osp.basename(cc.split()[0]) |
|
cc_info = subprocess.check_output(f'{cc} --version', shell=True) |
|
env_info['GCC'] = cc_info.decode('utf-8').partition( |
|
'\n')[0].strip() |
|
else: |
|
|
|
|
|
|
|
import locale |
|
import os |
|
from distutils.ccompiler import new_compiler |
|
ccompiler = new_compiler() |
|
ccompiler.initialize() |
|
cc = subprocess.check_output( |
|
f'{ccompiler.cc}', stderr=subprocess.STDOUT, shell=True) |
|
encoding = os.device_encoding( |
|
sys.stdout.fileno()) or locale.getpreferredencoding() |
|
env_info['MSVC'] = cc.decode(encoding).partition('\n')[0].strip() |
|
env_info['GCC'] = 'n/a' |
|
except (subprocess.CalledProcessError, errors.DistutilsPlatformError): |
|
env_info['GCC'] = 'n/a' |
|
except io.UnsupportedOperation as e: |
|
|
|
|
|
|
|
|
|
env_info['MSVC'] = f'n/a, reason: {str(e)}' |
|
|
|
env_info['PyTorch'] = torch.__version__ |
|
env_info['PyTorch compiling details'] = get_build_config() |
|
|
|
try: |
|
import torchvision |
|
env_info['TorchVision'] = torchvision.__version__ |
|
except ModuleNotFoundError: |
|
pass |
|
|
|
try: |
|
import cv2 |
|
env_info['OpenCV'] = cv2.__version__ |
|
except ImportError: |
|
pass |
|
|
|
|
|
return env_info |
|
|
|
if __name__ == '__main__': |
|
for name, val in collect_env().items(): |
|
print(f'{name}: {val}') |