HunyuanVideo / hyvideo /utils /file_utils.py
Fabrice-TIERCELIN's picture
Upload 5 files
1b84443 verified
import os
from pathlib import Path
from einops import rearrange
import torch
import torchvision
import numpy as np
import imageio
CODE_SUFFIXES = {
".py", # Python codes
".sh", # Shell scripts
".yaml",
".yml", # Configuration files
}
def safe_dir(path):
"""
Create a directory (or the parent directory of a file) if it does not exist.
Args:
path (str or Path): Path to the directory.
Returns:
path (Path): Path object of the directory.
"""
path = Path(path)
path.mkdir(exist_ok=True, parents=True)
return path
def safe_file(path):
"""
Create the parent directory of a file if it does not exist.
Args:
path (str or Path): Path to the file.
Returns:
path (Path): Path object of the file.
"""
path = Path(path)
path.parent.mkdir(exist_ok=True, parents=True)
return path
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=1, fps=24):
"""save videos by video tensor
copy from https://github.com/guoyww/AnimateDiff/blob/e92bd5671ba62c0d774a32951453e328018b7c5b/animatediff/utils/util.py#L61
Args:
videos (torch.Tensor): video tensor predicted by the model
path (str): path to save video
rescale (bool, optional): rescale the video tensor from [-1, 1] to . Defaults to False.
n_rows (int, optional): Defaults to 1.
fps (int, optional): video save fps. Defaults to 8.
"""
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = torch.clamp(x, 0, 1)
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
imageio.mimsave(path, outputs, fps=fps)