Spaces:
Running
Running
File size: 17,703 Bytes
ad6358b 6cc454a ad6358b 6cc454a ad6358b 6cc454a ad6358b 6cc454a ad6358b 6cc454a ad6358b 9fdefc9 ad6358b 9fdefc9 ad6358b 9fdefc9 ad6358b 9fdefc9 ad6358b 9fdefc9 ad6358b 9fdefc9 ad6358b 9fdefc9 ad6358b f5a76ac ad6358b 1ae6f28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import gradio as gr
import numpy as np
import time
import math
import random
import torch
import spaces
from diffusers import StableDiffusionXLInpaintPipeline
from PIL import Image
import PIL.ImageOps
from pillow_heif import register_heif_opener
register_heif_opener()
max_64_bit_int = np.iinfo(np.int32).max
if torch.cuda.is_available():
device = "cuda"
floatType = torch.float16
variant = "fp16"
else:
device = "cpu"
floatType = torch.float32
variant = None
pipe = StableDiffusionXLInpaintPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype = floatType, variant = variant)
pipe = pipe.to(device)
def update_seed(is_randomize_seed, seed):
if is_randomize_seed:
return random.randint(0, max_64_bit_int)
return seed
def toggle_debug(is_debug_mode):
return [gr.update(visible = is_debug_mode)] * 2
def check(
source_img,
prompt,
uploaded_mask: Image.Image,
negative_prompt,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
denoising_steps,
is_randomize_seed,
seed,
debug_mode,
progress = gr.Progress()
):
if source_img is None:
raise gr.Error("Please provide an image.")
if prompt is None or prompt == "":
raise gr.Error("Please provide a prompt input.")
def inpaint(
source_img,
prompt,
uploaded_mask: Image.Image,
negative_prompt,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
denoising_steps,
is_randomize_seed,
seed,
debug_mode,
progress = gr.Progress()
):
check(
source_img,
prompt,
uploaded_mask,
negative_prompt,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
denoising_steps,
is_randomize_seed,
seed,
debug_mode
)
start = time.time()
progress(0, desc = "Preparing data...")
if negative_prompt is None:
negative_prompt = ""
if num_inference_steps is None:
num_inference_steps = 25
if guidance_scale is None:
guidance_scale = 7
if image_guidance_scale is None:
image_guidance_scale = 1.1
if strength is None:
strength = 0.99
if denoising_steps is None:
denoising_steps = 1000
if seed is None:
seed = random.randint(0, max_64_bit_int)
random.seed(seed)
#pipe = pipe.manual_seed(seed)
input_image = source_img["background"].convert("RGB")
original_height, original_width, original_channel = np.array(input_image).shape
output_width = original_width
output_height = original_height
if uploaded_mask is None:
mask_image = source_img["layers"][0].convert("RGB")
else:
mask_image = uploaded_mask.convert("RGB")
mask_image = mask_image.resize((original_width, original_height))
# Limited to 1 million pixels
if 1024 * 1024 < output_width * output_height:
factor = ((1024 * 1024) / (output_width * output_height))**0.5
process_width = math.floor(output_width * factor)
process_height = math.floor(output_height * factor)
limitation = " Due to technical limitation, the image have been downscaled and then upscaled.";
else:
process_width = output_width
process_height = output_height
limitation = "";
# Width and height must be multiple of 8
if (process_width % 8) != 0 or (process_height % 8) != 0:
if ((process_width - (process_width % 8) + 8) * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
process_width = process_width - (process_width % 8) + 8
process_height = process_height - (process_height % 8) + 8
elif (process_height % 8) <= (process_width % 8) and ((process_width - (process_width % 8) + 8) * process_height) <= (1024 * 1024):
process_width = process_width - (process_width % 8) + 8
process_height = process_height - (process_height % 8)
elif (process_width % 8) <= (process_height % 8) and (process_width * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
process_width = process_width - (process_width % 8)
process_height = process_height - (process_height % 8) + 8
else:
process_width = process_width - (process_width % 8)
process_height = process_height - (process_height % 8)
if torch.cuda.is_available():
progress(None, desc = "Searching a GPU...")
output_image = inpaint_on_gpu(
seed,
process_width,
process_height,
prompt,
negative_prompt,
input_image,
mask_image,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
denoising_steps,
progress
)
if limitation != "":
output_image = output_image.resize((output_width, output_height))
if debug_mode == False:
input_image = None
mask_image = None
end = time.time()
secondes = int(end - start)
minutes = math.floor(secondes / 60)
secondes = secondes - (minutes * 60)
hours = math.floor(minutes / 60)
minutes = minutes - (hours * 60)
return [
output_image,
("Start again to get a different result. " if is_randomize_seed else "") + "The image has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec." + limitation,
input_image,
mask_image
]
def inpaint_on_gpu2(
seed,
process_width,
process_height,
prompt,
negative_prompt,
input_image,
mask_image,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
denoising_steps,
progress
):
return input_image
@spaces.GPU(duration=420)
def inpaint_on_gpu(
seed,
process_width,
process_height,
prompt,
negative_prompt,
input_image,
mask_image,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
denoising_steps,
progress
):
progress(None, desc = "Processing...")
return pipe(
seeds = [seed],
width = process_width,
height = process_height,
prompt = prompt,
negative_prompt = negative_prompt,
image = input_image,
mask_image = mask_image,
num_inference_steps = num_inference_steps,
guidance_scale = guidance_scale,
image_guidance_scale = image_guidance_scale,
strength = strength,
denoising_steps = denoising_steps,
show_progress_bar = True
).images[0]
with gr.Blocks() as interface:
gr.HTML(
"""
<h1 style="text-align: center;">Inpaint / Outpaint</h1>
<p style="text-align: center;">Modifies one detail of your image, at any resolution, freely, without account, without watermark, without installation, which can be downloaded</p>
<br/>
<br/>
✨ Powered by <i>SDXL 1.0</i> artificial intellingence. For illustration purpose, not information purpose. The new content is not based on real information but imagination.
<br/>
<ul>
<li>To change the <b>view angle</b> of your image, I recommend to use <i>Zero123</i>,</li>
<li>To <b>upscale</b> your image, I recommend to use <i><a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR">SUPIR</a></i>,</li>
<li>To <b>slightly change</b> your image, I recommend to use <i>Image-to-Image SDXL</i>,</li>
<li>If you need to enlarge the <b>viewpoint</b> of your image, I recommend you to use <i>Uncrop</i>,</li>
<li>To remove the <b>background</b> of your image, I recommend to use <i>BRIA</i>,</li>
<li>To make a <b>tile</b> of your image, I recommend to use <i>Make My Image Tile</i>,</li>
<li>To modify <b>anything else</b> on your image, I recommend to use <i>Instruct Pix2Pix</i>.</li>
</ul>
<br/>
""" + ("🏃♀️ Estimated time: few minutes. Current device: GPU." if torch.cuda.is_available() else "🐌 Slow process... ~1 hour. Current device: CPU.") + """
Your computer must not enter into standby mode.<br/>You can duplicate this space on a free account, it's designed to work on CPU, GPU and ZeroGPU.<br/>
<a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Inpaint?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
<br/>
⚖️ You can use, modify and share the generated images but not for commercial uses.
"""
)
with gr.Column():
source_img = gr.ImageMask(label = "Your image (click on the landscape 🌄 to upload your image; click on the pen 🖌️ to draw the mask)", type = "pil", brush=gr.Brush(colors=["#FFFFFF80"], color_mode="fixed"))
prompt = gr.Textbox(label = "Prompt", info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = "Describe what you want to see in the entire image", lines = 2)
with gr.Accordion("Upload a mask", open = False):
uploaded_mask = gr.Image(label = "Already made mask (black pixels will be preserved, white pixels will be redrawn)", sources = ["upload"], type = "pil")
with gr.Accordion("Advanced options", open = False):
negative_prompt = gr.Textbox(label = "Negative prompt", placeholder = "Describe what you do NOT want to see in the entire image", value = "Ugly, malformed, noise, blur, watermark")
num_inference_steps = gr.Slider(minimum = 10, maximum = 100, value = 25, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Guidance Scale", info = "lower=image quality, higher=follow the prompt")
image_guidance_scale = gr.Slider(minimum = 1, value = 1.1, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image")
strength = gr.Slider(value = 0.99, minimum = 0.01, maximum = 1.0, step = 0.01, label = "Strength", info = "lower=follow the original area, higher=redraw from scratch")
denoising_steps = gr.Number(minimum = 0, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed")
debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")
submit = gr.Button("🚀 Inpaint", variant = "primary")
inpainted_image = gr.Image(label = "Inpainted image")
information = gr.HTML()
original_image = gr.Image(label = "Original image", visible = False)
mask_image = gr.Image(label = "Mask image", visible = False)
submit.click(update_seed, inputs = [
randomize_seed, seed
], outputs = [
seed
], queue = False, show_progress = False).then(toggle_debug, debug_mode, [
original_image,
mask_image
], queue = False, show_progress = False).then(check, inputs = [
source_img,
prompt,
uploaded_mask,
negative_prompt,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
denoising_steps,
randomize_seed,
seed,
debug_mode
], outputs = [], queue = False, show_progress = False).success(inpaint, inputs = [
source_img,
prompt,
uploaded_mask,
negative_prompt,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
denoising_steps,
randomize_seed,
seed,
debug_mode
], outputs = [
inpainted_image,
information,
original_image,
mask_image
], scroll_to_output = True)
gr.Examples(
fn = inpaint,
inputs = [
source_img,
prompt,
uploaded_mask,
negative_prompt,
num_inference_steps,
guidance_scale,
image_guidance_scale,
strength,
denoising_steps,
randomize_seed,
seed,
debug_mode
],
outputs = [
inpainted_image,
information,
original_image,
mask_image
],
examples = [
[
"./Examples/Example1.png",
"A deer, in a forest landscape, ultrarealistic, realistic, photorealistic, 8k",
"./Examples/Mask1.webp",
"Ugly, malformed, painting, drawing, cartoon, anime, 3d, noise, blur, watermark",
25,
7,
1.1,
0.99,
1000,
False,
42,
False
],
[
"./Examples/Example3.jpg",
"An angry old woman, ultrarealistic, realistic, photorealistic, 8k",
"./Examples/Mask3.gif",
"Ugly, malformed, painting, drawing, cartoon, anime, 3d, noise, blur, watermark",
25,
7,
1.5,
0.99,
1000,
False,
42,
False
],
[
"./Examples/Example4.gif",
"A laptop, ultrarealistic, realistic, photorealistic, 8k",
"./Examples/Mask4.bmp",
"Ugly, malformed, painting, drawing, cartoon, anime, 3d, noise, blur, watermark",
25,
7,
1.1,
0.99,
1000,
False,
42,
False
],
[
"./Examples/Example5.bmp",
"A sand castle, ultrarealistic, realistic, photorealistic, 8k",
"./Examples/Mask5.png",
"Ugly, malformed, painting, drawing, cartoon, anime, 3d, noise, blur, watermark",
50,
7,
1.5,
0.5,
1000,
False,
42,
False
],
[
"./Examples/Example2.webp",
"A cat, ultrarealistic, realistic, photorealistic, 8k",
"./Examples/Mask2.png",
"Ugly, malformed, painting, drawing, cartoon, anime, 3d, noise, blur, watermark",
25,
7,
1.1,
0.99,
1000,
False,
42,
False
],
],
cache_examples = False,
)
gr.Markdown(
"""
## How to prompt your image
To easily read your prompt, start with the subject, then describ the pose or action, then secondary elements, then the background, then the graphical style, then the image quality:
```
A Vietnamese woman, red clothes, walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
```
You can use round brackets to increase the importance of a part:
```
A Vietnamese woman, (red clothes), walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
```
You can use several levels of round brackets to even more increase the importance of a part:
```
A Vietnamese woman, ((red clothes)), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
```
You can use number instead of several round brackets:
```
A Vietnamese woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
```
You can do the same thing with square brackets to decrease the importance of a part:
```
A [Vietnamese] woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
```
To easily read your negative prompt, organize it the same way as your prompt (not important for the AI):
```
man, boy, hat, running, tree, bicycle, forest, drawing, painting, cartoon, 3d, monochrome, blurry, noisy, bokeh
```
"""
)
interface.queue().launch() |