Spaces:
Running
Running
Upgrade to 4.41.0
Browse files
README.md
CHANGED
@@ -1,23 +1,23 @@
|
|
1 |
-
---
|
2 |
-
title: Inpaint SDXL (any size)
|
3 |
-
emoji: ↕️
|
4 |
-
colorFrom: blue
|
5 |
-
colorTo: purple
|
6 |
-
tags:
|
7 |
-
- Image-to-Image
|
8 |
-
- Image-2-Image
|
9 |
-
- Img-to-Img
|
10 |
-
- Img-2-Img
|
11 |
-
- SDXL
|
12 |
-
- Stable Diffusion
|
13 |
-
- language models
|
14 |
-
- LLMs
|
15 |
-
sdk: gradio
|
16 |
-
sdk_version:
|
17 |
-
app_file: app.py
|
18 |
-
pinned: false
|
19 |
-
license: mit
|
20 |
-
short_description: Modifies one detail of your image, at any resolution, freely
|
21 |
-
---
|
22 |
-
|
23 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
---
|
2 |
+
title: Inpaint SDXL (any size)
|
3 |
+
emoji: ↕️
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
+
tags:
|
7 |
+
- Image-to-Image
|
8 |
+
- Image-2-Image
|
9 |
+
- Img-to-Img
|
10 |
+
- Img-2-Img
|
11 |
+
- SDXL
|
12 |
+
- Stable Diffusion
|
13 |
+
- language models
|
14 |
+
- LLMs
|
15 |
+
sdk: gradio
|
16 |
+
sdk_version: 4.41.0
|
17 |
+
app_file: app.py
|
18 |
+
pinned: false
|
19 |
+
license: mit
|
20 |
+
short_description: Modifies one detail of your image, at any resolution, freely
|
21 |
+
---
|
22 |
+
|
23 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,413 +1,459 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import time
|
4 |
-
import math
|
5 |
-
import random
|
6 |
-
import imageio
|
7 |
-
import torch
|
8 |
-
import spaces
|
9 |
-
|
10 |
-
from diffusers import StableDiffusionXLInpaintPipeline
|
11 |
-
from PIL import Image, ImageFilter
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
pipe =
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
)
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
def inpaint(
|
58 |
-
source_img,
|
59 |
-
prompt,
|
60 |
-
uploaded_mask,
|
61 |
-
negative_prompt,
|
62 |
-
num_inference_steps,
|
63 |
-
guidance_scale,
|
64 |
-
image_guidance_scale,
|
65 |
-
strength,
|
66 |
-
denoising_steps,
|
67 |
-
is_randomize_seed,
|
68 |
-
seed,
|
69 |
-
debug_mode,
|
70 |
-
progress = gr.Progress()
|
71 |
-
):
|
72 |
-
check(
|
73 |
-
source_img,
|
74 |
-
prompt,
|
75 |
-
uploaded_mask,
|
76 |
-
negative_prompt,
|
77 |
-
num_inference_steps,
|
78 |
-
guidance_scale,
|
79 |
-
image_guidance_scale,
|
80 |
-
strength,
|
81 |
-
denoising_steps,
|
82 |
-
is_randomize_seed,
|
83 |
-
seed,
|
84 |
-
debug_mode
|
85 |
-
)
|
86 |
-
start = time.time()
|
87 |
-
progress(0, desc = "Preparing data...")
|
88 |
-
|
89 |
-
if negative_prompt is None:
|
90 |
-
negative_prompt = ""
|
91 |
-
|
92 |
-
if num_inference_steps is None:
|
93 |
-
num_inference_steps = 25
|
94 |
-
|
95 |
-
if guidance_scale is None:
|
96 |
-
guidance_scale = 7
|
97 |
-
|
98 |
-
if image_guidance_scale is None:
|
99 |
-
image_guidance_scale = 1.1
|
100 |
-
|
101 |
-
if strength is None:
|
102 |
-
strength = 0.99
|
103 |
-
|
104 |
-
if denoising_steps is None:
|
105 |
-
denoising_steps = 1000
|
106 |
-
|
107 |
-
if seed is None:
|
108 |
-
seed = random.randint(0, max_64_bit_int)
|
109 |
-
|
110 |
-
random.seed(seed)
|
111 |
-
#pipe = pipe.manual_seed(seed)
|
112 |
-
|
113 |
-
input_image = source_img["
|
114 |
-
|
115 |
-
original_height, original_width, original_channel = np.array(input_image).shape
|
116 |
-
output_width = original_width
|
117 |
-
output_height = original_height
|
118 |
-
|
119 |
-
if uploaded_mask is None:
|
120 |
-
mask_image = source_img["
|
121 |
-
else:
|
122 |
-
mask_image = uploaded_mask.convert("RGB")
|
123 |
-
mask_image = mask_image.resize((original_width, original_height))
|
124 |
-
|
125 |
-
# Limited to 1 million pixels
|
126 |
-
if 1024 * 1024 < output_width * output_height:
|
127 |
-
factor = ((1024 * 1024) / (output_width * output_height))**0.5
|
128 |
-
process_width = math.floor(output_width * factor)
|
129 |
-
process_height = math.floor(output_height * factor)
|
130 |
-
|
131 |
-
limitation = " Due to technical limitation, the image have been downscaled and then upscaled.";
|
132 |
-
else:
|
133 |
-
process_width = output_width
|
134 |
-
process_height = output_height
|
135 |
-
|
136 |
-
limitation = "";
|
137 |
-
|
138 |
-
# Width and height must be multiple of 8
|
139 |
-
if (process_width % 8) != 0 or (process_height % 8) != 0:
|
140 |
-
if ((process_width - (process_width % 8) + 8) * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
|
141 |
-
process_width = process_width - (process_width % 8) + 8
|
142 |
-
process_height = process_height - (process_height % 8) + 8
|
143 |
-
elif (process_height % 8) <= (process_width % 8) and ((process_width - (process_width % 8) + 8) * process_height) <= (1024 * 1024):
|
144 |
-
process_width = process_width - (process_width % 8) + 8
|
145 |
-
process_height = process_height - (process_height % 8)
|
146 |
-
elif (process_width % 8) <= (process_height % 8) and (process_width * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
|
147 |
-
process_width = process_width - (process_width % 8)
|
148 |
-
process_height = process_height - (process_height % 8) + 8
|
149 |
-
else:
|
150 |
-
process_width = process_width - (process_width % 8)
|
151 |
-
process_height = process_height - (process_height % 8)
|
152 |
-
|
153 |
-
progress(None, desc = "Processing...")
|
154 |
-
output_image =
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
prompt
|
159 |
-
negative_prompt
|
160 |
-
|
161 |
-
mask_image
|
162 |
-
num_inference_steps
|
163 |
-
guidance_scale
|
164 |
-
image_guidance_scale
|
165 |
-
strength
|
166 |
-
denoising_steps
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
413 |
interface.queue().launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import time
|
4 |
+
import math
|
5 |
+
import random
|
6 |
+
import imageio
|
7 |
+
import torch
|
8 |
+
import spaces
|
9 |
+
|
10 |
+
from diffusers import StableDiffusionXLInpaintPipeline
|
11 |
+
from PIL import Image, ImageFilter, ImageEnhance
|
12 |
+
import PIL.ImageOps
|
13 |
+
|
14 |
+
max_64_bit_int = 2**63 - 1
|
15 |
+
|
16 |
+
if torch.cuda.is_available():
|
17 |
+
device = "cuda"
|
18 |
+
floatType = torch.float16
|
19 |
+
variant = "fp16"
|
20 |
+
else:
|
21 |
+
device = "cpu"
|
22 |
+
floatType = torch.float32
|
23 |
+
variant = None
|
24 |
+
|
25 |
+
pipe = StableDiffusionXLInpaintPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype = floatType, variant = variant)
|
26 |
+
pipe = pipe.to(device)
|
27 |
+
|
28 |
+
def update_seed(is_randomize_seed, seed):
|
29 |
+
if is_randomize_seed:
|
30 |
+
return random.randint(0, max_64_bit_int)
|
31 |
+
return seed
|
32 |
+
|
33 |
+
def toggle_debug(is_debug_mode):
|
34 |
+
return [gr.update(visible = is_debug_mode)] * 2
|
35 |
+
|
36 |
+
def check(
|
37 |
+
source_img,
|
38 |
+
prompt,
|
39 |
+
uploaded_mask,
|
40 |
+
negative_prompt,
|
41 |
+
num_inference_steps,
|
42 |
+
guidance_scale,
|
43 |
+
image_guidance_scale,
|
44 |
+
strength,
|
45 |
+
denoising_steps,
|
46 |
+
is_randomize_seed,
|
47 |
+
seed,
|
48 |
+
debug_mode,
|
49 |
+
progress = gr.Progress()
|
50 |
+
):
|
51 |
+
if source_img is None:
|
52 |
+
raise gr.Error("Please provide an image.")
|
53 |
+
|
54 |
+
if prompt is None or prompt == "":
|
55 |
+
raise gr.Error("Please provide a prompt input.")
|
56 |
+
|
57 |
+
def inpaint(
|
58 |
+
source_img,
|
59 |
+
prompt,
|
60 |
+
uploaded_mask,
|
61 |
+
negative_prompt,
|
62 |
+
num_inference_steps,
|
63 |
+
guidance_scale,
|
64 |
+
image_guidance_scale,
|
65 |
+
strength,
|
66 |
+
denoising_steps,
|
67 |
+
is_randomize_seed,
|
68 |
+
seed,
|
69 |
+
debug_mode,
|
70 |
+
progress = gr.Progress()
|
71 |
+
):
|
72 |
+
check(
|
73 |
+
source_img,
|
74 |
+
prompt,
|
75 |
+
uploaded_mask,
|
76 |
+
negative_prompt,
|
77 |
+
num_inference_steps,
|
78 |
+
guidance_scale,
|
79 |
+
image_guidance_scale,
|
80 |
+
strength,
|
81 |
+
denoising_steps,
|
82 |
+
is_randomize_seed,
|
83 |
+
seed,
|
84 |
+
debug_mode
|
85 |
+
)
|
86 |
+
start = time.time()
|
87 |
+
progress(0, desc = "Preparing data...")
|
88 |
+
|
89 |
+
if negative_prompt is None:
|
90 |
+
negative_prompt = ""
|
91 |
+
|
92 |
+
if num_inference_steps is None:
|
93 |
+
num_inference_steps = 25
|
94 |
+
|
95 |
+
if guidance_scale is None:
|
96 |
+
guidance_scale = 7
|
97 |
+
|
98 |
+
if image_guidance_scale is None:
|
99 |
+
image_guidance_scale = 1.1
|
100 |
+
|
101 |
+
if strength is None:
|
102 |
+
strength = 0.99
|
103 |
+
|
104 |
+
if denoising_steps is None:
|
105 |
+
denoising_steps = 1000
|
106 |
+
|
107 |
+
if seed is None:
|
108 |
+
seed = random.randint(0, max_64_bit_int)
|
109 |
+
|
110 |
+
random.seed(seed)
|
111 |
+
#pipe = pipe.manual_seed(seed)
|
112 |
+
|
113 |
+
input_image = source_img["background"].convert("RGB")
|
114 |
+
|
115 |
+
original_height, original_width, original_channel = np.array(input_image).shape
|
116 |
+
output_width = original_width
|
117 |
+
output_height = original_height
|
118 |
+
|
119 |
+
if uploaded_mask is None:
|
120 |
+
mask_image = source_img["layers"][0].convert("RGB")
|
121 |
+
else:
|
122 |
+
mask_image = uploaded_mask.convert("RGB")
|
123 |
+
mask_image = mask_image.resize((original_width, original_height))
|
124 |
+
|
125 |
+
# Limited to 1 million pixels
|
126 |
+
if 1024 * 1024 < output_width * output_height:
|
127 |
+
factor = ((1024 * 1024) / (output_width * output_height))**0.5
|
128 |
+
process_width = math.floor(output_width * factor)
|
129 |
+
process_height = math.floor(output_height * factor)
|
130 |
+
|
131 |
+
limitation = " Due to technical limitation, the image have been downscaled and then upscaled.";
|
132 |
+
else:
|
133 |
+
process_width = output_width
|
134 |
+
process_height = output_height
|
135 |
+
|
136 |
+
limitation = "";
|
137 |
+
|
138 |
+
# Width and height must be multiple of 8
|
139 |
+
if (process_width % 8) != 0 or (process_height % 8) != 0:
|
140 |
+
if ((process_width - (process_width % 8) + 8) * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
|
141 |
+
process_width = process_width - (process_width % 8) + 8
|
142 |
+
process_height = process_height - (process_height % 8) + 8
|
143 |
+
elif (process_height % 8) <= (process_width % 8) and ((process_width - (process_width % 8) + 8) * process_height) <= (1024 * 1024):
|
144 |
+
process_width = process_width - (process_width % 8) + 8
|
145 |
+
process_height = process_height - (process_height % 8)
|
146 |
+
elif (process_width % 8) <= (process_height % 8) and (process_width * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
|
147 |
+
process_width = process_width - (process_width % 8)
|
148 |
+
process_height = process_height - (process_height % 8) + 8
|
149 |
+
else:
|
150 |
+
process_width = process_width - (process_width % 8)
|
151 |
+
process_height = process_height - (process_height % 8)
|
152 |
+
|
153 |
+
progress(None, desc = "Processing...")
|
154 |
+
output_image = inpaint_on_gpu(
|
155 |
+
seed,
|
156 |
+
process_width,
|
157 |
+
process_height,
|
158 |
+
prompt,
|
159 |
+
negative_prompt,
|
160 |
+
input_image,
|
161 |
+
mask_image,
|
162 |
+
num_inference_steps,
|
163 |
+
guidance_scale,
|
164 |
+
image_guidance_scale,
|
165 |
+
strength,
|
166 |
+
denoising_steps
|
167 |
+
)
|
168 |
+
|
169 |
+
if limitation != "":
|
170 |
+
output_image = output_image.resize((output_width, output_height))
|
171 |
+
|
172 |
+
if debug_mode == False:
|
173 |
+
input_image = None
|
174 |
+
mask_image = None
|
175 |
+
|
176 |
+
end = time.time()
|
177 |
+
secondes = int(end - start)
|
178 |
+
minutes = math.floor(secondes / 60)
|
179 |
+
secondes = secondes - (minutes * 60)
|
180 |
+
hours = math.floor(minutes / 60)
|
181 |
+
minutes = minutes - (hours * 60)
|
182 |
+
return [
|
183 |
+
output_image,
|
184 |
+
("Start again to get a different result. " if is_randomize_seed else "") + "The image has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec." + limitation,
|
185 |
+
input_image,
|
186 |
+
mask_image
|
187 |
+
]
|
188 |
+
|
189 |
+
def inpaint_on_gpu2(
|
190 |
+
seed,
|
191 |
+
process_width,
|
192 |
+
process_height,
|
193 |
+
prompt,
|
194 |
+
negative_prompt,
|
195 |
+
input_image,
|
196 |
+
mask_image,
|
197 |
+
num_inference_steps,
|
198 |
+
guidance_scale,
|
199 |
+
image_guidance_scale,
|
200 |
+
strength,
|
201 |
+
denoising_steps
|
202 |
+
):
|
203 |
+
return input_image
|
204 |
+
|
205 |
+
@spaces.GPU(duration=420)
|
206 |
+
def inpaint_on_gpu(
|
207 |
+
seed,
|
208 |
+
process_width,
|
209 |
+
process_height,
|
210 |
+
prompt,
|
211 |
+
negative_prompt,
|
212 |
+
input_image,
|
213 |
+
mask_image,
|
214 |
+
num_inference_steps,
|
215 |
+
guidance_scale,
|
216 |
+
image_guidance_scale,
|
217 |
+
strength,
|
218 |
+
denoising_steps
|
219 |
+
):
|
220 |
+
return pipe(
|
221 |
+
seeds = [seed],
|
222 |
+
width = process_width,
|
223 |
+
height = process_height,
|
224 |
+
prompt = prompt,
|
225 |
+
negative_prompt = negative_prompt,
|
226 |
+
image = input_image,
|
227 |
+
mask_image = mask_image,
|
228 |
+
num_inference_steps = num_inference_steps,
|
229 |
+
guidance_scale = guidance_scale,
|
230 |
+
image_guidance_scale = image_guidance_scale,
|
231 |
+
strength = strength,
|
232 |
+
denoising_steps = denoising_steps,
|
233 |
+
show_progress_bar = True
|
234 |
+
).images[0]
|
235 |
+
|
236 |
+
with gr.Blocks() as interface:
|
237 |
+
gr.HTML(
|
238 |
+
"""
|
239 |
+
<h1 style="text-align: center;">Inpaint</h1>
|
240 |
+
<p style="text-align: center;">Modifies one detail of your image, at any resolution, freely, without account, without watermark, without installation, which can be downloaded</p>
|
241 |
+
<br/>
|
242 |
+
<br/>
|
243 |
+
✨ Powered by <i>SDXL 1.0</i> artificial intellingence. For illustration purpose, not information purpose. The new content is not based on real information but imagination.
|
244 |
+
<br/>
|
245 |
+
<ul>
|
246 |
+
<li>To change the <b>view angle</b> of your image, I recommend to use <i>Zero123</i>,</li>
|
247 |
+
<li>To <b>upscale</b> your image, I recommend to use <i><a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR">SUPIR</a></i>,</li>
|
248 |
+
<li>To <b>slightly change</b> your image, I recommend to use <i>Image-to-Image SDXL</i>,</li>
|
249 |
+
<li>If you need to enlarge the <b>viewpoint</b> of your image, I recommend you to use <i>Uncrop</i>,</li>
|
250 |
+
<li>To remove the <b>background</b> of your image, I recommend to use <i>BRIA</i>,</li>
|
251 |
+
<li>To make a <b>tile</b> of your image, I recommend to use <i>Make My Image Tile</i>,</li>
|
252 |
+
<li>To modify <b>anything else</b> on your image, I recommend to use <i>Instruct Pix2Pix</i>.</li>
|
253 |
+
</ul>
|
254 |
+
<br/>
|
255 |
+
""" + ("🏃♀️ Estimated time: few minutes. Current device: GPU." if torch.cuda.is_available() else "🐌 Slow process... ~1 hour. Current device: CPU.") + """
|
256 |
+
Your computer must not enter into standby mode.<br/>You can duplicate this space on a free account, it's designed to work on CPU, GPU and ZeroGPU.<br/>
|
257 |
+
<a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Inpaint?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
|
258 |
+
<br/>
|
259 |
+
⚖️ You can use, modify and share the generated images but not for commercial uses.
|
260 |
+
|
261 |
+
"""
|
262 |
+
)
|
263 |
+
with gr.Column():
|
264 |
+
source_img = gr.ImageMask(label = "Your image", type = "pil", brush=gr.Brush(colors=["white"], color_mode="fixed"))
|
265 |
+
prompt = gr.Textbox(label = "Prompt", info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = "Describe what you want to see in the entire image", lines = 2)
|
266 |
+
with gr.Accordion("Upload a mask", open = False):
|
267 |
+
uploaded_mask = gr.Image(label = "Already made mask (black pixels will be preserved, white pixels will be redrawn)", sources = ["upload"], type = "pil")
|
268 |
+
with gr.Accordion("Advanced options", open = False):
|
269 |
+
negative_prompt = gr.Textbox(label = "Negative prompt", placeholder = "Describe what you do NOT want to see in the entire image", value = "Ugly, malformed, noise, blur, watermark")
|
270 |
+
num_inference_steps = gr.Slider(minimum = 10, maximum = 100, value = 25, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
|
271 |
+
guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
|
272 |
+
image_guidance_scale = gr.Slider(minimum = 1, value = 1.1, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image")
|
273 |
+
strength = gr.Slider(value = 0.99, minimum = 0.01, maximum = 1.0, step = 0.01, label = "Strength", info = "lower=follow the original area, higher=redraw from scratch")
|
274 |
+
denoising_steps = gr.Number(minimum = 0, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
|
275 |
+
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
|
276 |
+
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed")
|
277 |
+
debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")
|
278 |
+
|
279 |
+
submit = gr.Button("🚀 Inpaint", variant = "primary")
|
280 |
+
|
281 |
+
inpainted_image = gr.Image(label = "Inpainted image")
|
282 |
+
information = gr.HTML()
|
283 |
+
original_image = gr.Image(label = "Original image", visible = False)
|
284 |
+
mask_image = gr.Image(label = "Mask image", visible = False)
|
285 |
+
|
286 |
+
submit.click(update_seed, inputs = [
|
287 |
+
randomize_seed, seed
|
288 |
+
], outputs = [
|
289 |
+
seed
|
290 |
+
], queue = False, show_progress = False).then(toggle_debug, debug_mode, [
|
291 |
+
original_image,
|
292 |
+
mask_image
|
293 |
+
], queue = False, show_progress = False).then(check, inputs = [
|
294 |
+
source_img,
|
295 |
+
prompt,
|
296 |
+
uploaded_mask,
|
297 |
+
negative_prompt,
|
298 |
+
num_inference_steps,
|
299 |
+
guidance_scale,
|
300 |
+
image_guidance_scale,
|
301 |
+
strength,
|
302 |
+
denoising_steps,
|
303 |
+
randomize_seed,
|
304 |
+
seed,
|
305 |
+
debug_mode
|
306 |
+
], outputs = [], queue = False, show_progress = False).success(inpaint, inputs = [
|
307 |
+
source_img,
|
308 |
+
prompt,
|
309 |
+
uploaded_mask,
|
310 |
+
negative_prompt,
|
311 |
+
num_inference_steps,
|
312 |
+
guidance_scale,
|
313 |
+
image_guidance_scale,
|
314 |
+
strength,
|
315 |
+
denoising_steps,
|
316 |
+
randomize_seed,
|
317 |
+
seed,
|
318 |
+
debug_mode
|
319 |
+
], outputs = [
|
320 |
+
inpainted_image,
|
321 |
+
information,
|
322 |
+
original_image,
|
323 |
+
mask_image
|
324 |
+
], scroll_to_output = True)
|
325 |
+
|
326 |
+
gr.Examples(
|
327 |
+
fn = inpaint,
|
328 |
+
inputs = [
|
329 |
+
source_img,
|
330 |
+
prompt,
|
331 |
+
uploaded_mask,
|
332 |
+
negative_prompt,
|
333 |
+
num_inference_steps,
|
334 |
+
guidance_scale,
|
335 |
+
image_guidance_scale,
|
336 |
+
strength,
|
337 |
+
denoising_steps,
|
338 |
+
randomize_seed,
|
339 |
+
seed,
|
340 |
+
debug_mode
|
341 |
+
],
|
342 |
+
outputs = [
|
343 |
+
inpainted_image,
|
344 |
+
information,
|
345 |
+
original_image,
|
346 |
+
mask_image
|
347 |
+
],
|
348 |
+
examples = [
|
349 |
+
[
|
350 |
+
"./Examples/Example1.png",
|
351 |
+
"A deer, in a forest landscape, ultrarealistic, realistic, photorealistic, 8k",
|
352 |
+
"./Examples/Mask1.webp",
|
353 |
+
"Ugly, malformed, painting, drawing, cartoon, anime, 3d, noise, blur, watermark",
|
354 |
+
25,
|
355 |
+
7,
|
356 |
+
1.1,
|
357 |
+
0.99,
|
358 |
+
1000,
|
359 |
+
False,
|
360 |
+
42,
|
361 |
+
False
|
362 |
+
],
|
363 |
+
[
|
364 |
+
"./Examples/Example3.jpg",
|
365 |
+
"An angry old woman, ultrarealistic, realistic, photorealistic, 8k",
|
366 |
+
"./Examples/Mask3.gif",
|
367 |
+
"Ugly, malformed, painting, drawing, cartoon, anime, 3d, noise, blur, watermark",
|
368 |
+
25,
|
369 |
+
7,
|
370 |
+
1.5,
|
371 |
+
0.99,
|
372 |
+
1000,
|
373 |
+
False,
|
374 |
+
42,
|
375 |
+
False
|
376 |
+
],
|
377 |
+
[
|
378 |
+
"./Examples/Example4.gif",
|
379 |
+
"A laptop, ultrarealistic, realistic, photorealistic, 8k",
|
380 |
+
"./Examples/Mask4.bmp",
|
381 |
+
"Ugly, malformed, painting, drawing, cartoon, anime, 3d, noise, blur, watermark",
|
382 |
+
25,
|
383 |
+
7,
|
384 |
+
1.1,
|
385 |
+
0.99,
|
386 |
+
1000,
|
387 |
+
False,
|
388 |
+
42,
|
389 |
+
False
|
390 |
+
],
|
391 |
+
[
|
392 |
+
"./Examples/Example5.bmp",
|
393 |
+
"A sand castle, ultrarealistic, realistic, photorealistic, 8k",
|
394 |
+
"./Examples/Mask5.png",
|
395 |
+
"Ugly, malformed, painting, drawing, cartoon, anime, 3d, noise, blur, watermark",
|
396 |
+
50,
|
397 |
+
7,
|
398 |
+
1.5,
|
399 |
+
0.5,
|
400 |
+
1000,
|
401 |
+
False,
|
402 |
+
42,
|
403 |
+
False
|
404 |
+
],
|
405 |
+
[
|
406 |
+
"./Examples/Example2.webp",
|
407 |
+
"A cat, ultrarealistic, realistic, photorealistic, 8k",
|
408 |
+
"./Examples/Mask2.png",
|
409 |
+
"Ugly, malformed, painting, drawing, cartoon, anime, 3d, noise, blur, watermark",
|
410 |
+
25,
|
411 |
+
7,
|
412 |
+
1.1,
|
413 |
+
0.99,
|
414 |
+
1000,
|
415 |
+
False,
|
416 |
+
42,
|
417 |
+
False
|
418 |
+
],
|
419 |
+
],
|
420 |
+
cache_examples = False,
|
421 |
+
)
|
422 |
+
|
423 |
+
gr.Markdown(
|
424 |
+
"""
|
425 |
+
## How to prompt your image
|
426 |
+
|
427 |
+
To easily read your prompt, start with the subject, then describ the pose or action, then secondary elements, then the background, then the graphical style, then the image quality:
|
428 |
+
```
|
429 |
+
A Vietnamese woman, red clothes, walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
|
430 |
+
```
|
431 |
+
|
432 |
+
You can use round brackets to increase the importance of a part:
|
433 |
+
```
|
434 |
+
A Vietnamese woman, (red clothes), walking, smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
|
435 |
+
```
|
436 |
+
|
437 |
+
You can use several levels of round brackets to even more increase the importance of a part:
|
438 |
+
```
|
439 |
+
A Vietnamese woman, ((red clothes)), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
|
440 |
+
```
|
441 |
+
|
442 |
+
You can use number instead of several round brackets:
|
443 |
+
```
|
444 |
+
A Vietnamese woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
|
445 |
+
```
|
446 |
+
|
447 |
+
You can do the same thing with square brackets to decrease the importance of a part:
|
448 |
+
```
|
449 |
+
A [Vietnamese] woman, (red clothes:1.5), (walking), smilling, in the street, a car on the left, in a modern city, photorealistic, 8k
|
450 |
+
```
|
451 |
+
|
452 |
+
To easily read your negative prompt, organize it the same way as your prompt (not important for the AI):
|
453 |
+
```
|
454 |
+
man, boy, hat, running, tree, bicycle, forest, drawing, painting, cartoon, 3d, monochrome, blurry, noisy, bokeh
|
455 |
+
```
|
456 |
+
"""
|
457 |
+
)
|
458 |
+
|
459 |
interface.queue().launch()
|