File size: 5,522 Bytes
901e379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import logging
import os
import pathlib
import xml.etree.ElementTree as ET
import h5py
import cv2
import numpy as np
import lmdb
from .caffe_pb2 import *

class VOCDataset:

    def __init__(self, root, transform=None, target_transform=None, is_test=False, keep_difficult=False, label_file=None):
        """Dataset for VOC data.
        Args:
            root: the root of the VOC2007 or VOC2012 dataset, the directory contains the following sub-directories:
                Annotations, ImageSets, JPEGImages, SegmentationClass, SegmentationObject.
        """
        self.root = "D:/test"
        self.transform = transform
        self.target_transform = target_transform
        if is_test:
            image_sets_file = self.root + '/test.txt'
        else:
            image_sets_file = self.root + '/test.txt'
        self.ids = ['1.hdf5']#VOCDataset._read_image_ids(image_sets_file)
        self.keep_difficult = keep_difficult

        # if the labels file exists, read in the class names
        label_file_name = self.root + "labels.txt"

        if os.path.isfile(label_file_name):
            class_string = ""
            with open(label_file_name, 'r') as infile:
                for line in infile:
                    class_string += line.rstrip()

            # classes should be a comma separated list

            classes = class_string.split(',')
            # prepend BACKGROUND as first class
            classes.insert(0, 'BACKGROUND')
            classes = [elem.replace(" ", "") for elem in classes]
            self.class_names = tuple(classes)
            logging.info("VOC Labels read from file: " + str(self.class_names))

        else:
            logging.info("No labels file, using default VOC classes.")
            self.class_names = ('BACKGROUND',
                                'face')

        self.class_dict = {class_name: i for i, class_name in enumerate(self.class_names)}

    # def __getitem__(self, index):
    #     image_id = self.ids[index]
    #     boxes, labels, is_difficult = self._get_annotation(image_id)
    #     if not self.keep_difficult:
    #         boxes = boxes[is_difficult == 0]
    #         labels = labels[is_difficult == 0]
    #     image = self._read_image(image_id)
    #     if self.transform:
    #         image, boxes, labels = self.transform(image, boxes, labels)
    #     if self.target_transform:
    #         boxes, labels = self.target_transform(boxes, labels)
    #     return image, boxes, labels

    def __getitem__(self, index):
        num_per_shared = 3
        file_idx = index // num_per_shared
        idx_in_file = index % num_per_shared
        hdf_path = os.path.join(self.root, self.ids[file_idx])
        with h5py.File(hdf_path, 'r') as f:
            boxes = f[str(idx_in_file) + '_boxes']
            is_difficult = f[str(idx_in_file) + '_difficult']
            image = f[str(idx_in_file) + '_image']
            labels = f[str(idx_in_file) + 'labels']

        if not self.keep_difficult:
            boxes = boxes[is_difficult == 0]
            labels = labels[is_difficult == 0]
        if self.transform:
            image, boxes, labels = self.transform(image, boxes, labels)
        if self.target_transform:
            boxes, labels = self.target_transform(boxes, labels)

        return image, boxes, labels

    def get_image(self, index):
        image_id = self.ids[index]
        image = self._read_image(image_id)
        if self.transform:
            image, _ = self.transform(image)
        return image

    def get_annotation(self, index):
        image_id = self.ids[index]
        return image_id, self._get_annotation(image_id)

    def __len__(self):
        total = 0
        # for file in self.ids:
        #     hdf_path = os.path.join(self.root, file)
        #     f = h5py.File(hdf_path, 'r')
        #     total += len(f.keys())
        return total // 4

    @staticmethod
    def _read_image_ids(image_sets_file):
        ids = []
        with open(image_sets_file) as f:
            for line in f:
                ids.append(line.rstrip())
        return ids

    def _get_annotation(self, image_id):
        annotation_file = self.root / f"Annotations/{image_id}.xml"
        objects = ET.parse(annotation_file).findall("object")
        boxes = []
        labels = []
        is_difficult = []
        for object in objects:
            class_name = object.find('name').text.lower().strip()
            # we're only concerned with clases in our list
            if class_name in self.class_dict:
                bbox = object.find('bndbox')

                # VOC dataset format follows Matlab, in which indexes start from 0
                x1 = float(bbox.find('xmin').text) - 1
                y1 = float(bbox.find('ymin').text) - 1
                x2 = float(bbox.find('xmax').text) - 1
                y2 = float(bbox.find('ymax').text) - 1
                boxes.append([x1, y1, x2, y2])

                labels.append(self.class_dict[class_name])
                is_difficult_str = object.find('difficult').text
                is_difficult.append(int(is_difficult_str) if is_difficult_str else 0)

        return (np.array(boxes, dtype=np.float32),
                np.array(labels, dtype=np.int64),
                np.array(is_difficult, dtype=np.uint8))

    def _read_image(self, image_id):
        image_file = self.root / f"JPEGImages/{image_id}.jpg"
        image = cv2.imread(str(image_file))
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        return image