|
import math |
|
|
|
import torch |
|
|
|
|
|
def generate_priors(feature_map_list, shrinkage_list, image_size, min_boxes, clamp=True) -> torch.Tensor: |
|
priors = [] |
|
for index in range(0, len(feature_map_list[0])): |
|
scale_w = image_size[0] / shrinkage_list[0][index] |
|
scale_h = image_size[1] / shrinkage_list[1][index] |
|
for j in range(0, feature_map_list[1][index]): |
|
for i in range(0, feature_map_list[0][index]): |
|
x_center = (i + 0.5) / scale_w |
|
y_center = (j + 0.5) / scale_h |
|
|
|
for min_box in min_boxes[index]: |
|
w = min_box / image_size[0] |
|
h = min_box / image_size[1] |
|
priors.append([ |
|
x_center, |
|
y_center, |
|
w, |
|
h |
|
]) |
|
print("priors nums:{}".format(len(priors))) |
|
priors = torch.tensor(priors) |
|
if clamp: |
|
torch.clamp(priors, 0.0, 1.0, out=priors) |
|
return priors |
|
|
|
|
|
def convert_locations_to_boxes(locations, priors, center_variance, |
|
size_variance): |
|
"""Convert regressional location results of SSD into boxes in the form of (center_x, center_y, h, w). |
|
|
|
The conversion: |
|
$$predicted\_center * center_variance = \frac {real\_center - prior\_center} {prior\_hw}$$ |
|
$$exp(predicted\_hw * size_variance) = \frac {real\_hw} {prior\_hw}$$ |
|
We do it in the inverse direction here. |
|
Args: |
|
locations (batch_size, num_priors, 4): the regression output of SSD. It will contain the outputs as well. |
|
priors (num_priors, 4) or (batch_size/1, num_priors, 4): prior boxes. |
|
center_variance: a float used to change the scale of center. |
|
size_variance: a float used to change of scale of size. |
|
Returns: |
|
boxes: priors: [[center_x, center_y, h, w]]. All the values |
|
are relative to the image size. |
|
""" |
|
|
|
if priors.dim() + 1 == locations.dim(): |
|
priors = priors.unsqueeze(0) |
|
return torch.cat([ |
|
locations[..., :2] * center_variance * priors[..., 2:] + priors[..., :2], |
|
torch.exp(locations[..., 2:] * size_variance) * priors[..., 2:] |
|
], dim=locations.dim() - 1) |
|
|
|
|
|
def convert_boxes_to_locations(center_form_boxes, center_form_priors, center_variance, size_variance): |
|
|
|
if center_form_priors.dim() + 1 == center_form_boxes.dim(): |
|
center_form_priors = center_form_priors.unsqueeze(0) |
|
return torch.cat([ |
|
(center_form_boxes[..., :2] - center_form_priors[..., :2]) / center_form_priors[..., 2:] / center_variance, |
|
torch.log(center_form_boxes[..., 2:] / center_form_priors[..., 2:]) / size_variance |
|
], dim=center_form_boxes.dim() - 1) |
|
|
|
|
|
def area_of(left_top, right_bottom) -> torch.Tensor: |
|
"""Compute the areas of rectangles given two corners. |
|
|
|
Args: |
|
left_top (N, 2): left top corner. |
|
right_bottom (N, 2): right bottom corner. |
|
|
|
Returns: |
|
area (N): return the area. |
|
""" |
|
hw = torch.clamp(right_bottom - left_top, min=0.0) |
|
return hw[..., 0] * hw[..., 1] |
|
|
|
|
|
def iou_of(boxes0, boxes1, eps=1e-5): |
|
"""Return intersection-over-union (Jaccard index) of boxes. |
|
|
|
Args: |
|
boxes0 (N, 4): ground truth boxes. |
|
boxes1 (N or 1, 4): predicted boxes. |
|
eps: a small number to avoid 0 as denominator. |
|
Returns: |
|
iou (N): IoU values. |
|
""" |
|
overlap_left_top = torch.max(boxes0[..., :2], boxes1[..., :2]) |
|
overlap_right_bottom = torch.min(boxes0[..., 2:], boxes1[..., 2:]) |
|
|
|
overlap_area = area_of(overlap_left_top, overlap_right_bottom) |
|
area0 = area_of(boxes0[..., :2], boxes0[..., 2:]) |
|
area1 = area_of(boxes1[..., :2], boxes1[..., 2:]) |
|
return overlap_area / (area0 + area1 - overlap_area + eps) |
|
|
|
|
|
def assign_priors(gt_boxes, gt_labels, corner_form_priors, |
|
iou_threshold): |
|
"""Assign ground truth boxes and targets to priors. |
|
|
|
Args: |
|
gt_boxes (num_targets, 4): ground truth boxes. |
|
gt_labels (num_targets): labels of targets. |
|
priors (num_priors, 4): corner form priors |
|
Returns: |
|
boxes (num_priors, 4): real values for priors. |
|
labels (num_priros): labels for priors. |
|
""" |
|
|
|
ious = iou_of(gt_boxes.unsqueeze(0), corner_form_priors.unsqueeze(1)) |
|
|
|
best_target_per_prior, best_target_per_prior_index = ious.max(1) |
|
|
|
best_prior_per_target, best_prior_per_target_index = ious.max(0) |
|
|
|
for target_index, prior_index in enumerate(best_prior_per_target_index): |
|
best_target_per_prior_index[prior_index] = target_index |
|
|
|
best_target_per_prior.index_fill_(0, best_prior_per_target_index, 2) |
|
|
|
labels = gt_labels[best_target_per_prior_index] |
|
labels[best_target_per_prior < iou_threshold] = 0 |
|
boxes = gt_boxes[best_target_per_prior_index] |
|
return boxes, labels |
|
|
|
|
|
def hard_negative_mining(loss, labels, neg_pos_ratio): |
|
""" |
|
It used to suppress the presence of a large number of negative prediction. |
|
It works on image level not batch level. |
|
For any example/image, it keeps all the positive predictions and |
|
cut the number of negative predictions to make sure the ratio |
|
between the negative examples and positive examples is no more |
|
the given ratio for an image. |
|
|
|
Args: |
|
loss (N, num_priors): the loss for each example. |
|
labels (N, num_priors): the labels. |
|
neg_pos_ratio: the ratio between the negative examples and positive examples. |
|
""" |
|
pos_mask = labels > 0 |
|
num_pos = pos_mask.long().sum(dim=1, keepdim=True) |
|
num_neg = num_pos * neg_pos_ratio |
|
|
|
loss[pos_mask] = -math.inf |
|
_, indexes = loss.sort(dim=1, descending=True) |
|
_, orders = indexes.sort(dim=1) |
|
neg_mask = orders < num_neg |
|
return pos_mask | neg_mask |
|
|
|
|
|
def center_form_to_corner_form(locations): |
|
return torch.cat([locations[..., :2] - locations[..., 2:] / 2, |
|
locations[..., :2] + locations[..., 2:] / 2], locations.dim() - 1) |
|
|
|
|
|
def corner_form_to_center_form(boxes): |
|
return torch.cat([ |
|
(boxes[..., :2] + boxes[..., 2:]) / 2, |
|
boxes[..., 2:] - boxes[..., :2] |
|
], boxes.dim() - 1) |
|
|
|
|
|
def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200): |
|
""" |
|
|
|
Args: |
|
box_scores (N, 5): boxes in corner-form and probabilities. |
|
iou_threshold: intersection over union threshold. |
|
top_k: keep top_k results. If k <= 0, keep all the results. |
|
candidate_size: only consider the candidates with the highest scores. |
|
Returns: |
|
picked: a list of indexes of the kept boxes |
|
""" |
|
scores = box_scores[:, -1] |
|
boxes = box_scores[:, :-1] |
|
picked = [] |
|
_, indexes = scores.sort(descending=True) |
|
indexes = indexes[:candidate_size] |
|
while len(indexes) > 0: |
|
current = indexes[0] |
|
picked.append(current.item()) |
|
if 0 < top_k == len(picked) or len(indexes) == 1: |
|
break |
|
current_box = boxes[current, :] |
|
indexes = indexes[1:] |
|
rest_boxes = boxes[indexes, :] |
|
iou = iou_of( |
|
rest_boxes, |
|
current_box.unsqueeze(0), |
|
) |
|
indexes = indexes[iou <= iou_threshold] |
|
|
|
return box_scores[picked, :] |
|
|
|
|
|
def nms(box_scores, nms_method=None, score_threshold=None, iou_threshold=None, |
|
sigma=0.5, top_k=-1, candidate_size=200): |
|
if nms_method == "soft": |
|
return soft_nms(box_scores, score_threshold, sigma, top_k) |
|
else: |
|
return hard_nms(box_scores, iou_threshold, top_k, candidate_size=candidate_size) |
|
|
|
|
|
def soft_nms(box_scores, score_threshold, sigma=0.5, top_k=-1): |
|
"""Soft NMS implementation. |
|
|
|
References: |
|
https://arxiv.org/abs/1704.04503 |
|
https://github.com/facebookresearch/Detectron/blob/master/detectron/utils/cython_nms.pyx |
|
|
|
Args: |
|
box_scores (N, 5): boxes in corner-form and probabilities. |
|
score_threshold: boxes with scores less than value are not considered. |
|
sigma: the parameter in score re-computation. |
|
scores[i] = scores[i] * exp(-(iou_i)^2 / simga) |
|
top_k: keep top_k results. If k <= 0, keep all the results. |
|
Returns: |
|
picked_box_scores (K, 5): results of NMS. |
|
""" |
|
picked_box_scores = [] |
|
while box_scores.size(0) > 0: |
|
max_score_index = torch.argmax(box_scores[:, 4]) |
|
cur_box_prob = torch.tensor(box_scores[max_score_index, :]) |
|
picked_box_scores.append(cur_box_prob) |
|
if len(picked_box_scores) == top_k > 0 or box_scores.size(0) == 1: |
|
break |
|
cur_box = cur_box_prob[:-1] |
|
box_scores[max_score_index, :] = box_scores[-1, :] |
|
box_scores = box_scores[:-1, :] |
|
ious = iou_of(cur_box.unsqueeze(0), box_scores[:, :-1]) |
|
box_scores[:, -1] = box_scores[:, -1] * torch.exp(-(ious * ious) / sigma) |
|
box_scores = box_scores[box_scores[:, -1] > score_threshold, :] |
|
if len(picked_box_scores) > 0: |
|
return torch.stack(picked_box_scores) |
|
else: |
|
return torch.tensor([]) |
|
|