Spaces:
Runtime error
Runtime error
File size: 2,186 Bytes
fac37fe 956127b fac37fe d4e49b0 ca1de39 956127b 43ca9c2 956127b 43ca9c2 c408675 956127b e1564de 6448874 351771b 68c8a8e 43855cb 956127b 6448874 fac37fe d4e49b0 cdfa50b 4057e5d d4e49b0 4057e5d d4e49b0 4057e5d 50b9a9e fac37fe ca1de39 c7e7fdf ca1de39 4eec90c c7e7fdf 4eec90c ca1de39 4eec90c c7e7fdf 4eec90c ca1de39 4eec90c c7e7fdf 4eec90c ca1de39 4eec90c ca1de39 4057e5d ca1de39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import gradio as gr
import pandas as pd
from sklearn import datasets
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
def findCorrelation(dataset, target):
df = pd.read_csv(dataset.name)
non_numeric_cols = df.select_dtypes('object').columns.tolist()
if target in non_numeric_cols:
label_encoder = LabelEncoder()
df[non_numeric_col] = label_encoder.fit_transform(df[target])
d = df.corr()[target].to_dict()
d.pop(target)
keys = sorted(d.items(), key=lambda x: x[0], reverse=True)
fig1 = plt.figure()
hm = sns.heatmap(df.corr(), annot = True)
hm.set(title = "Correlation matrix of dataset\n")
try:
fig2 = plt.figure()
sns.regplot(x=df[keys[0][0]], y=df[target])
except:
fig2 = plt.figure()
try:
fig3 = plt.figure()
sns.regplot(x=df[keys[1][0]], y=df[target])
except:
fig3 = plt.figure()
try:
fig4 = plt.figure()
sns.regplot(x=df[keys[2][0]], y=df[target])
except:
fig4 = plt.figure()
return d, fig1, fig2, fig3, fig4
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
file = gr.File()
with gr.Column():
inp = gr.Textbox(placeholder="Enter the target feature name", label="Target Variable")
btn = gr.Button("Find Correlation")
gr.Markdown(
"""
## Correlation with other numeric features
""")
with gr.Row():
labels = gr.Label(num_top_classes = 10)
gr.Markdown(
"""
## HeatMap
""")
with gr.Row():
fig1 = gr.Plot()
gr.Markdown(
"""
## Plot of top 3 correlated features
""")
with gr.Row():
with gr.Column():
fig2 = gr.Plot()
with gr.Column():
fig3 = gr.Plot()
with gr.Row():
fig4 = gr.Plot()
with gr.Row():
gr.Examples(
examples = [["boston.csv", "MEDV"]], fn=findCorrelation, inputs=[file, inp], outputs=[labels, fig1, fig2, fig3, fig4], cache_examples=True)
btn.click( fn=findCorrelation, inputs=[file, inp], outputs=[labels, fig1, fig2, fig3, fig4])
demo.launch() |